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ABSTRACT

The presence of air bubbles in ship wakes and their dynamic interaction with the

turbulent vortical flows create security problems by modifying the hydro-acoustic

properties of ship navigation. This study concerns understanding and controlling the

mechanisms, which may lead to selective concentration of bubbles to form clusters or

clouds and to predict their size distribution and motion. Numerical simulations were

conducted using the Large Eddy Simulation (LES) technique in conjunction with a

Lagrangian particle tracking (LPT) technique appropriate for dispersed two-phase

turbulent flows.

In order to cut down on the execution time of LES, the simulation for the flow

around the ship model are not considered, instead the simulations started just after the

ship where the inlet conditions are prescribed with the help of a newly developed

Random Flow Generation (RFG) procedure, and to compute bubble distributions.

Moreover, to improve turn-around time of the computations and allow LES of the

developing wake in a larger domain, parallel simulation tools are developed and adopted

in this study.

The turbulence characteristics of ship wakes on a straight tract and a circular tract

are investigated using the above mentioned techniques, and processes (e.g. free surface

effects, anisotropy, etc.) contributing to turbulence generation are identified, and

appropriate sub-grid scale (SGS) models are developed and applied. For the first time, a

relatively long developing near wake of three ship lengths was simulated using LES on

parallel computers with more than six million nodes.
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1 INTRODUCTION

1.1 Background

The problem of bubble dynamics in ship wakes is important in naval hydrodynamics

because of ship security as some bubbles somehow form clusters within the turbulent eddies

(vortical structures) and some are able to persist for miles leaving a field signature. Bubbles can

be generated by various mechanisms, e.g. cavitation, wave breaking, ship nose hydrodynamics,

and propeller ventilation. The acoustic properties such as the resonance frequency of the media

are a function of local bubble size and population as well as the random motion and pressure

fluctuations of the surrounding liquid. The detailed microscale dynamics of turbulent bubbly

flows leading to acoustic radiation needs to be studied in order to understand and eventually to

control hydro-acoustics properties. Unless the vortical structures at the lower end of the integral

length scale of turbulence are resolved in relation to bubble size and cluster size the bubble

dynamics can not be understood. Most researchers use classical turbulence models called

Reynolds Averaged Navier-Stokes (RANS) models. The classical turbulence models need

extensive empirical input and their success is quite limited. The direct numerical simulations can

provide very detailed information, but application to practical problems such as that of the wake

of a ship is impossible due to excessive amount of computer time and storage requirements.

Large-eddy simulation (LES) on the other hand resolves only the large eddies to the extent it is

necessary, hence optimizing details, accuracy, and computational requirements. Not many

researchers utilize large eddy simulations for this problem in spite of the successful predictions

seen in other areas such as atmospheric turbulence, flow past bluff bodies, boundary and shear

layers (see Galperin and Orszag, 1993; Lesieur and Metais, 1996; Reynolds, 1989). The

interaction of two-phases from the perspective of turbulence enhancement or damping in the near

wake of ships seems to play an active role in determining bubble size and population. This, in

turn, determines the phenomenon in the far wake which can be predicted using non-conventional

techniques such as large eddy simulations. This is the focus area of the present study.



1.2 Current Status of Turbulent Two-phase Flow Modeling

We shall consider only the non-reacting, isothermal two-phase flows with a dispersed

phase within a continuous phase. The local instantaneous formulation for such flows is fairly

well established (Anderson and Jackson, 1967; Ishii, 1975; Drew, 1992; Joseph and Lundgren,

1990) The continuum equations are identical to the Navier-Stokes Equations for a variable

property fluid except for the phase interaction terms. The constitutive equations for the

interaction terms are not as well understood, and there is still much research and debate

underway for the advancement of these equations. The equation of motion for a single particle is

the well known BBO (Basset-Boussinesq-Osceen) equation which has been extended to the case

of unsteady, spatially non-uniform ambient flow (Maxey and Riley, 1983; Maxey, 1987).

Simplified versions and many variants of this equation are used in applications to specific

problems. For example, when the fluid to particle density ratio is small, many terms in the

particle equation can be neglected leading to a fairly simple equation involving only the drag and

lift forces.

Numerical solution of the turbulent single phase flow equations can be categorized into

three major groups, (1) Reynolds averaged Navier-Stokes (RANS) approach, (2) large-eddy

simulation (LES) technique, and (3) direct numerical simulation (DNS) approach. The same

approaches have been extended to two-phase flows but with much more controversy and

empiricism primarily due to the complex nature of the interaction terms. Before we briefly

explain the merits of these three approaches another classification of two-phase flow simulations

needs to be mentioned, these are: the Eulerian-Lagrangian (EL), Eulerian-Eulerian, (EE) and

Mixed Eulerian-Lagrangian (MEL) formulations.

In the EL approach, the "Monte-Carlo Method" is used almost exclusively (see e.g. Chen

and Crowe, 1984; Mostafa and Mongia, 1987, 1989; Ounis and Ahmadi, 1990; Gouesbet, 1992).

The equation of motion for the particle is solved directly using a randomly generated fluid

velocity fluctuation added to the calculated mean velocity field. The fluctuating components of

the fluid velocity are calculated using a probability density distribution function (PDF) which is

usually assumed to be Gaussian. Its mean is equal to the time averaged fluid velocity, and the

variance is the root mean square of the fluid velocity functions, rms ug = (2k/3)12 , where k is the

turbulent kinetic energy. This relation is only valid for locally isotropic turbulence. The time

variation of the fluid velocity fluctuations are calculated by random sampling of the PDF at
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certain time intervals. This time interval is called the particle fluid interaction time, tint. It is taken

as the minimum of a characteristic eddy life time, te, and a particle transit time, tr, defined as the

time it takes a particle to traverse across an eddy of size, 1e, which is usually related to E, the

dissipation rate of k.

In the EE approach the motion of the particulate phase is resolved by solving continuum

transport equations (continuity and momentum) similar to those for the fluid phase in an Eulerian

frame of reference (Durst et al., 1984; Mostafa and Mongia, 1987; Chen and Pereira, 1995). Here

the major problem is the modeling of turbulence augmentation by the presence of the dispersed

phase in addition to the modeling of interfacial momentum exchange between the two phases.

A review and comparison of the Lagrangian and Eulerian Approaches is presented by

Durst et al. (1984), Mostafa and Mongia (1987), and Gouesbet (1992). Durst et al. concludes that

for the Lagrangian approach the computer storage requirement does not increase with the

number of particle size groups. In order to obtain more complete information in an Eulerian

approach, the equation of motion for each representative particle size group must be solved. This

would be very time consuming. Mostafa and Mongia concludes that the Monte-Carlo technique

is more expensive than the multi-size Eulerian treatment. Elgobashi (1996) points out that in

Lagrangian handling of the particle equation of motion about 90% time is spent in particle

tracking. However, this situation can be improved considerably if the Lagrangian particle

equations are solved in parallel using efficient parallelization techniques. A further advantage of

the Lagrangian approach is that droplet or bubble coalescence and/or breakup (disintegration)

can be modeled with relative ease.

In the MEL approach, the equations of mass, momentum, and energy along with the

trajectory equations for a range of particle sizes or injection locations and properties, are solved

in Lagrangian frame of reference to determine the history of each particle. The mean fluid

velocity is used in the particle equation of motion. The influence of fluid turbulence is accounted

for separately either by adding a turbulent diffusion force, ftd into the particle equation, or by

correcting the particle velocity obtained from the single particle equation by adding a turbulent

diffusion velocity, Upd (Celik, 1988; Dukowicz, 1980; Berlemont et al., 1993; Hallmann et al.,

1995). The calculation of Upd usually involves solving an Eulerian transport equation for the

particulate phase. The transport equation involves a transport coefficient called particle

diffusivity, which must be prescribed empirically. Many empirical equations are suggested in the
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literature (e.g. Mostafa and Mongia, 1989) for calculating this parameter. The Eulerian gas-phase

equations contain source (or sink) terms to account for the influence of particulate phase on the

fluid and vice versa. This input can also be computed from a probability distribution function

(PDF) using a Monte Carlo method. The PDF is usually of Gaussian type with the mean and the

variance being a function of k and c or other turbulence parameters. Typically tens of thousands

of particle trajectories must be calculated to obtain reasonable statistics for the particles. Particle-

particle interaction is also taken into account to a certain extent using semi-empirical relations,

and by allowing fragmentation, coagulation (or agglomeration).

RANS Models

The RANS models are derived by time-smoothing and/or averaging of the local

instantaneous equations which are already volume averaged (see e.g. Dasgupta et al., 1994,

Drew, 1992; and Morel and Bestion, 1997). Most researchers use some version of the so called

k-c model or algebraic stress models with marginal success (see for example Saif and Bertodano,

1996; Shimizu and Yokomine, 1993; Sato et al., 1996; Celik and Gel, 1997; Paterson et al.,

1996). The central assumptions in the k-6 model are the same as in single phase models, i.e. the

isotropic eddy viscosity concept and the gradient diffusion model, in addition to the assumption

of local equilibrium which is valid with limitations only at very high Reynolds numbers. As

reviewed by Sato et al. and Shimizu and Yokomine the turbulent kinetic energy and epsilon

equations are most problematic for two-phase flow applications. It has been shown in the

literature (e.g. Shimizu et al., 1993; Balzer et al., 1997; Celik and Gel, 1997) that these equations

must be modified to include the turbulence modification due to the presence of dispersed phase.

The void fraction fluctuations can not be neglected in the continuous phase equations. It is

particularly difficult to incorporate higher order correlation terms which arise from the particle-

fluid interaction terms, which may account in certain cases (particle Reynolds number Rep<100)

for the suppression of turbulence and in certain cases (Rep> 400) for enhancement of the

turbulence of the main stream. As demonstrated by Celik and Gel (1997) the cross-stream

distribution of bubble concentration in shear layers is primarily determined by the kinetic energy

of the continuous phase. The more advanced Reynolds stress models (see e.g. Bertodano et al.,

1990; Simonin et al., 1995) have not proven to be any more successful than the k-c model. These
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models involve many more additional equations and ad-hoc assumptions in the presence of the

second phase.

LES and DNS Approach

Much of the uncertainties in turbulence modeling can be eliminated if the recently

developed Large-eddy simulation (LES) technique (Galperin and Orszag, 1993; Lesieur and

Metais, 1996; Karniadakis et al., 1990; Reynolds, 1989; Piomelli et al., 1988) can be extended to

two-phase flow with appropriate modifications. LES is a numerical technique in which large-

scale energy containing eddies (those responsible for the primary transport) are resolved

explicitly and only the small-scale sub-grid motions are modeled. This is not the same as the

Direct Numerical Simulations (DNS) which solves the full conservation equations without

parameterization and resolves all scales down to the Kolmogorov scales. Consequently it is

limited to much lower Reynolds numbers (typically Reynolds numbers less than 104 ) and simple

geometries (see e.g. Elgobashi, 1996). For most engineering problems the turbulence Reynolds

number is in the order great than 104 (easily reaching 108 in geophysical flows) which require

computations involving more than 1012 grid nodes. This is beyond the practical limits of present

computer technology. More over it is also extremely difficult to extend the highly accurate

schemes such as spectral methods which are necessary for DNS to more complicated geometries.

LES technique, on the other hand, solves the unsteady three-dimensional Navier-Stokes

equations with an appropriate filtering procedure. The filtered equations involve Reynolds stress

type of terms (contributions from the sub-grid scales) which are modeled by relating them to

strain rates with an eddy viscosity as the proportionality coefficient. This is referred to as SGS

closure model. The eddy viscosity is usually calculated as a function of the mesh size. Hence, the

finer the numerical mesh size, the less important is the effect of the smaller scales that are

filtered out. The three-dimensional time-dependent details of the largest scales of motion (those

responsible for the primary transport) are computed. The size of the scales that need to be

resolved determine the numerical mesh size to be used. LES makes extensive use of

computational accuracy and computer power rather than solving a large number of empirically

modeled equations as is the case for RANS models. In this regard it also requires the use of

accurate numerical schemes. In the DNS of dispersed two-phase flows (see e.g. Elgobashi, 1996:
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Part 1 & 2; McLaughlin, 1994; Chen and Pereira, 1995; Rouson and Eaton, 1994; Pedinotti et al.,

1993), in addition to the Navier-Stokes equations, the instantaneous particle equation is solved in

a Lagrangian frame of reference as explained above for the EL approach. Two-way coupling is

achieved by adding the momentum source terms in each computational cell as the calculations

proceed in time. DNS is the most sophisticated approach to represent the details of two-phase

dispersed flows at all scales. However, because of the restrictions cited above the most viable

technique for predicting two-phase flow turbulence is probably the LES.

LES has also been applied (Wang and Squires, 1995; Lavieville et al., 1995; Ebert and

Dehning, 1992) to two-phase flow turbulence, but in most studies only the continuous phase

turbulence is resolved using LES, and almost exclusively the applications are in the area of gas

solid flows with the exception of Lapin and Lubbert (1994). The later authors have reported

successful results for gas-slurry column reactors. Their approach might be classified as LES but

they do not refer to the LES literature. In gas-solid flow applications the particles are treated

usually as passive agents (one-way coupling) and their motion is calculated using the BBO

equation in which the filtered continuous phase velocity components are used directly. The

particle equation of motion is not filtered which is inconsistent with the formulation of the LES

equations. If the filtered values are used in the particle equation, the contribution from sub-grid

turbulence must be included. The prediction of turbulence augmentation by the presence of

dispersed phase (two-way coupling) is not trivial and there remain many issues to be resolved.

Inflow Boundary Conditions

Although advantageous to RANS based turbulence models there are still some

unresolved issues in LES applications to turbulent flow simulations. One of the most critical

problems is that large eddy simulations of spatially inhomogeneous flows require unsteady

turbulent inflow boundary conditions. Especially if high Reynolds number flows exist, the inflow

turbulence cannot be ignored and its effects has to be accounted for via methods of generating

turbulence with prescribed turbulence intensity at the inflow boundary. Two main groups of

approaches in large eddy simulation studies are usually adopted to generate inflow turbulence.

The first one is to conduct the auxiliary simulations of turbulent flow fields using the LES

approach (e.g. Lund et al., 1998 and Spalart, 1988) and to store the time series of fluctuating
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velocity components, which in turn will be reintroduced as inflow boundary conditions of the

main simulations. The main disadvantage of this approach is the computational cost which has to

be invested. The second group artificially generates time series of random velocity fluctuations

by performing an inverse Fourier transform for prescribed spectral densities. The main

disadvantage of this method is that the generated velocity field may lack both turbulent structure

and non-linear energy transfer. This may be remedied by Celik et al.'s (1999) approach, which

suggest a relatively simple random flow generation (RFG) algorithm, which can be used to

prescribe inlet conditions for spatially developing inhomogeneous anisotropic turbulent flows.

1.3 Objective and Present Contribution

The objective of this study is to develop theoretical and numerical capabilities and use

these to study the physics of bubble dynamics and mixing in three dimensional, turbulent flows

encountered in the near wake (-1-3 ship lengths) of ships using LES. Our focus will be on

prediction of bubble size and concentration variations, modeling of cluster formation

mechanisms in vortical structures, including their influence on the turbulence of the carrier

liquid. In the first phase of this study the surface waves will be imposed at most as boundary

conditions a priori. The phenomenon related to wave breakup, and air entrainment at the free

surface by waves will not be considered. The conditions at the inlet data plane will be obtained

from other researchers who already have grants from ONR to study ship hydrodynamics. Our

theoretical effort will be supplemented by laboratory experiments which will be used for model

validation. We shall develop parallel algorithms for high performance computers to be able to

compute realistic particle statistics with the goal of at least 105 particle trajectories. Our

contribution will be in advancement of the LES technique and its application to dispersed two-

phase turbulent flows with two-way coupling. This work will be unique in bringing a new

formulation regarding the subgrid-scale turbulence which will be based on a one-equation model

involving the kinetic energy of small scales. This equation will be modified to account for the

suppression and/or enhancement of turbulence by the dispersed phase. A new sub-grid length

scale parameterization will also be developed. As such this study will be the first (to the best of

our knowledge) attempt to apply the LES technique to bubbly ship wakes.
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2 METHODOLOGY

We performed this study utilizing a readily available computer code obtained from

Stanford University, with appropriate modifications to make the code suitable for gas-liquid two

phase flows. The computer code is based on an essentially non-staggered grid, finite volume

method using a fractional time step approach. Non-orthogonal curvilinear coordinates are applied

with an overall second order accuracy in both space and time. The Crank-Nicolson discretization

scheme has been applied for diagonal viscous and diffusion terms and an explicit Adams-

Bashforth scheme is employed for other terms. The central differencing (CD) scheme (with

special care due to numerical instabilities) is applied to discretize the convective terms. Detailed

information can be found in Shi (2001). It has been modified by our group to run in LES mode

with particles on parallel machines (see Yavuz et al., 2004; Shi et al., 2006; Smirnov et al.,

2005).

The current solution method is 2 nd order accurate both in space and time. Theoretically

the higher the order of the numerical scheme, the better the resolution should be under the same

grid spacing (Shi, 2001). However, Rai and Moin (1991) have shown that higher order of

accuracy combined with coarse grid spacing does not necessarily give better results. Jordan

(1999) showed that the results could be improved by improving the grid spacing. The power law

scheme is inaccurate under some limitations, in that when convection is dominant; it reduces to

1st order upwind scheme (Patankar, 1980). On the other hand, higher order CD schemes have in

addition the problem of artificial high frequency oscillations that may contaminate the turbulence

field (Rai and Moin, 1991). In LES, explicit schemes are preferable, but if stability is an issue,

some implicitness can be introduced, i.e. Crank-Nicolson time splitting. For information on the

LES code, i.e. equations, time advancement and spatial discretization schemes, the fractional

step method, poisson solver, etc., the reader is referred to Cehreli (2004) and Shi (2001).

Subgrid-scale closure for two phase bubbly turbulent flows have been considered at

various levels, starting from the simplest zero-equation Smagorinsky closure, and extending to 1-

equation, hybrid Smagorinsky-turbulent kinetic energy (TKE) closure, and, if necessary, to

dynamic SGS eddy viscosity model (for a review see Ferziger, (1993)). The basic Smagorinsky
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model and its variants need empirical modifications for wall damping and low turbulence

Reynolds numbers (see Reynolds (1989)). The RNG (Yakhot and Orszag, (1989)) method

produces a modified form of the Smagorinsky model by an analytical scale elimination method,

and it leads to an automatic correction for low turbulence Reynolds numbers. The need for wall

damping was satisfied using a van Driest damping function. We conducted a comparative study

of various subgrid-scale models and made improvements to better model the dispersed, gas-

liquid two phase flows relevant to ship wakes.

2.1 Governing Equations and Navier Stokes solver

The LES code used was originally developed by Zang et al. (1994). The equations for an

incompressible, viscous fluid flow in Cartesian (physical) space can be presented in terms of the

Cartesian velocities uj as

aui =0 
(2.1)

Dx1

Du =-I- - v-u +20ls U D-x -U 3  I"+ 2 Xi(1--Si 3 ) (2.2)
at axj p axi aX2 ax x•

An additional equation that represents the conservation of a scalar, such as kinetic

energy, temperature, etc. is,

LO += a a 20 - + (2.3)
Dt Dxij x S(0)

where cc is a material coefficient that could be thermal diffusivity, conductivity or

viscosity, depending on which scalar equation is solved. SJ (Ob) is a sink/source term. In the

above equations, uj is the Cartesian velocity vector, P is the total pressure, and i , j, k, are the

notations that represent the directions; x, is the axial coordinate, x2 is the vertical coordinate, and

x3 is the transverse coordinate in the Cartesian coordinate system. Qs is the angular velocity of

the system rotation due to the turning of the ship, v is the kinematic viscosity and 8ij is the

Kronecker delta symbol. In Eqn. 2.2, third term in the right hand side (RHS) represents the

Coriolis force and the fourth term represents the Centrifugal force due to the turning of the ship.
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It should be noted that Einstein summation rule applies to repeated indices except for the term,

n s2 Xi (1 - (50).-

The Navier Stokes equations have been developed for a general purpose model of fluid

flow from basic principles of conservation of mass and momentum for a Newtonian fluid.

Moreover, the numerical models, such as finite volume method (Ferziger and Peric, 1997) also

incorporate the law of conservation of mass and momentum for space integration.

The filtering process plays an important role in distinguishing small scales and large

scales in LES. A flow variable, f can be decomposed into a large scale of the flow field

component that is resolved, f and a small scale component that is filtered out, f', as,

f =f +f' (2.4)

Then the resolved scale field is obtained by applying spatial filtering that can be generally

expressed by the convolution integral (Leonard, 1974) for the calculation domain, D, as,

f(xx2x3)= fJ Gj(xj,x' :A)f(x, x2x3)dxldx2dx3 (2.5)
Dj=j

where G is the filter function and A is the filter width, i.e. the wavelength of the smallest

scale retained by the filtering function. The most commonly used filter functions are the box

filter, the sharp Fourier cutoff filter and Gaussian filter (best defined in wave space), and the top

hat filter (in real space) (Piomelli, 1999). In the present finite volume formulation, a volume

average box filter used by Deardoff (1970), is used, in which Gj=l (Zang et al., 1993).

Applying the filtering operator to the governing equations and following the formulation

of Zang et al. (1993) in a conservative manner, the spatially filtered flow conservation equations

can be written as,

as = 0 (2.6)
&x1

at: ,+x(2.7)
t C10
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-at axj •() (2.8)

where

FU =uU + Tgu - V awl + (2.9)

i7 , a 3cx ) 7 X (2.10)

ki =ý g--a c~x + Xj (2.11)
axi

Here, both, the SGS stress, ro and the SGS flux, Xj represent the effect of the SGS

motion. They arise due to the filtering of the nonlinear advective terms. The formulations are,

rT =uiu1-uiu1  (2.12)

Xj = uj1 b- i71 b (2.13)

Hence, the SGS stress and the SGS flux both contain the interaction of subgrid scales

with themselves and with the resolved scales. In the above equations, uj is the filtered velocity

vector and p is the reduced dynamic pressure in which the total pressure, P, is calculated as;

P = PoP+ 12PA r2 (2.14)
2

where r2 is the square of the distance to the rotation axis, in terms of both the axial and

2( ~22
the transverse directions, i.e. r 2 (= x2 + x3 ) and Po is the reference density. It should be noted

that the non-inertial effects are split with Coriolis terms appearing as a source term in Equation

2.7 and since the centrifugal force term is independent of the fluid motion, the effect of

centrifugal force is included in the total pressure term, i.e. Equation 2.14.
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Since the discrete solution represents the resolved field which is topped by an overbar

computed, thus the stress and the flux terms should be modeled using the resolved quantities.

Most SGS models for tij and Xj are eddy viscosity models of the form:

4J, (5# m
T#.-- Y 1 -2 v, 3 + C, /4)-! (2.15)
13 1 y 3)

af +-CP (2.16)

where v, is the turbulent eddy viscosity, it represents the effects of sub grid turbulence; in

our case, a, is the turbulence diffusivity and S is the large scale (resolved) strain rate tensor,

defined as,

1( Ia,. + a-j (2.17)

Eq. 2.15 and 2.16 introduces two sets of additional terms to the filtered governing

equations: C, and Lmi ; Cr and Pj. Lm ij, the modified Leonard term and Pj are defined by,

L7 =ui 1 -uiu1  (2.18)

Pi = W10• - uj 0 (2.19)

The modified Leonard term or Pj represent the interactions between resolved scales that

result in sub-grid scale contributions and can be computed directly from the resolved flow field

(Piomelli, 1999). The value of the scale similarity coefficient, C, in Eqn. 2.15 is either 0 or 1 or

may be determined dynamically depending on the type of sub-grid scale (SGS) model being

used. When C, = 0, Eqn. 2.15 represents the Smagorinsky model. When Cr = 1, it represents the

dynamic mixed model of Zang et al. (1993).

To tackle problems of complex geometries, the above mentioned equations are

transformed from the physical to computational space and formulated for a generalized

curvilinear coordinate system. The solution of numerical problems in complex domains using

boundary-fitted curvilinear coordinates is now a typical technique. The physical space is denoted
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by coordinates (Xx x2 'X3 )and the computational space by ( ,2' ,•3). The chain rule of

derivatives has been applied.

o ax~a (2.20)0xj &;j ag

In order to use the finite volume discretization, it is desirable to cast the equations in the

"Strong-Conservation-Law Form" as explained briefly in Zang et al. (1994).

Substituting Eqn. 2.15 into Eqn. 2.7, and applying coordinate transformation and

combining terms accordingly, Eqs. 2.6, 2.7 and 2.8 in time-dependent boundary-fitted curvilinear

coordinates are,

aUm -0 (2.21)

a~aE
t + am _ (2.22)

at aým

at a~m

where

F, =CUu + J-1a (V + VT)Gmnn aul (2.24)

= 2J- aý'mK aX3 _'73 aX"

Si l SIm 3 Cqým ) + (2.25)
j-l S~m S~ aVT G•R -c K( amLT J _C_ rýsmLj

ax1 ax, aým 0 raý, ax1

m-(a+aT Gmn ao (2.26)

Ti (0S) = g; (0) Cr a~ J-1 a mnP i (2.27)
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where for the curvilinear space variables; the inverse Jacobian, defined as J-i = det ax, ; the0am

contravariant velocity, Ur J-1 aým -j; the contravariant volume metrics, Gmn, that measures
ax1

the skewness of a grid cell, is defined as G"' = , the transformation of

ax1 ax1

S7 (05) to the computational domain, must be changed accordingly, depending on which scalar

equation is solved.

If the flux terms aFfim/aim and c-Rm/DIm are split like in Zang (1993) as,

[Cm +BI(p)+DE(u)+D,(u,)] (2.28)

aRm, =-[E,+FE )(p) (229O•., L pe•,z+_tpjj.( F.(]-](2.29)

where Ci and EP represent the convective terms, Bi is the discrete operator for the pressure

gradient term, DE and D, (FE and FI) are discrete operators for the explicitly treated off diagonal

terms and the implicitly treated diagonal viscous (diffusive) terms.

2.2 Numerical Method

The computer code is based on an essentially non-staggered grid, finite volume method

using a fractional time step approach. A staggered grid method in curvilinear coordinates

requires a large amount of computer memory for the metrics (Zang et al., 1993), hence the non-

staggered method originally developed by Rhie and Chow (1983) has been used to avoid these

kind of difficulties. Cartesian variables such as velocity and pressure are stored at cell centers

whereas the contravariant volume fluxes are defined at cell faces in a manner analogous to the

staggered-mesh system. The volume fluxes are not solution variables, but rather are determined

through interpolation of the cell-centered velocity values plus a projection operation that

guarantees exact conservation of mass. A traditional non staggered method does not enforce
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mass conservation in the cell and causes the pressure field to decouple (it produces spurious

oscillations in the pressure field, i.e."checkerboard" pattern) (Zang et al. 1994), whereas the

method of Rhie and Chow (1983) prevents the decoupling in its structure by defining the volume

flux on its corresponding face of the cell in addition to the Cartesian velocity components at the

cell center, therefore the momentum and continuity are both enforced in the same control volume

and the solutions are free from spurious pressure oscillations. It is directly applicable to curved

domains, as the accuracy of the method is not affected by grid orientations because of the non-

staggered grid layout. However, this process eliminates odd-even decoupling at the cost of

introducing implicit 4thorder dissipation, which in turn may affect mass conservation (Paterson,

2003).

Non-orthogonal curvilinear coordinates are applied with an overall second order accuracy

in both space and time. The Crank-Nicolson discretization scheme has been applied for diagonal

viscous (DI) and diffusion (FI) terms in order to remove the viscous instability (Zang et al., 1994)

while an explicit Adams-Bashforth scheme is employed for all the other terms. The off diagonal

viscous terms (DE) are treated explicitly in order to simplify the LHS matrix of the momentum

equation. The result, Zang (1993), is

JUm = 0 (2.30)

Sým

J1(win+1 - n) _3 1 [nl (~nl+g-

At 2L 2 PS(2.32)

where 6/ •represents discrete finite difference operators in the computational space,

superscripts represent the time step, Ci represents the convective terms, B1 represents the dicrete

operator for the pressure gradient terms.
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The central differencing (CD) scheme (with special care due to numerical instabilities) or

Quadratic Upstream Interpolation for Convective Kinematics (QUICK) that calculates the face

value from the nodal values using a quadratic upwind interpolation is applied to discretize the

convective terms (CI). The accuracy of QUICK has been compared to CD, the 1st order upwind

scheme, a hybrid scheme, with the result obtained that QUICK produced good results (Zang,

Hayasa, 1999). The spatial derivates are computed by 2 nd order central differences in the

momentum equations. Only the convective term in the scalar equation (Ep) is discretized using

the SHARP scheme (Leonard, 1988) since it is computationally more expensive than QUICK.

Because there is no explicit equation to solve for the pressure in time, the fractional step

method is applied to solve the incompressible Navier-Stokes equation. The fractional step

approach (Kim and Moin, 1985) or projection method, basically a three step predictor corrector

method, splits the numerical operators and achieves velocity-pressure decoupling. The

intermediate velocities are interpolated onto the faces of the control volume to form the source

terms of the pressure Poisson equation. The pressure field is obtained by solving the pressure

Poisson equation iteratively with a multigrid method (Brandt, 1977). The true velocity field is

then obtained by correcting the predicted velocity with pressure. The steps are summarized from

Zang (1993) as,

1. Predictor step:

(I - At - =

2J-

A I Cn+ D E (j~) + g n 2 'n- +KE(~ n) +gn- ] + D,1 uijn (2.33)
2J-122

2. Computing the pressure field, i.e. finding 4;

If the corrector step of the fractional step method (Equation 2.37) to the Cartesian

velocity components defined on a certain face of the control volume,

--n+ u = t* -At 5t (2.34)
-Xi S.m )
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Combining Urn = J-1 aý' Uj with Equation 2.34, the equations forU ,Un

+ m- 50n~l+' u;. - a x. Gm

= U* At Gmný (2.35)

where Um =--i J "m u4 is called the intermediate volume flux. Since the intermediate velocityM 1 x j

uj is defined at the cell center, while the fluxes Um and Um' are defined on the cell faces, u*

has to be interpolated onto the cell faces in order to compute UM.

By substituting Equation 2.35 into Equation 2.30, the pressure passion equation for on+'

is obtained as,

G _-m =t "m (2.36)
L5ýrn At d5ým

3. Corrector step:

I - _L = A B +1] (2.37)

where I is the identity matrix, ui* is the intermediate velocity and the scalar • is related to the

pressure j5 by

B, ( -1 _ At - D ( (2.38)

Detailed information can be found in Zang (1993).

2.3 Sub-grid Scale Models

SGS stresses that are modeled (see Eqn. 2.15) represent the effects of the sub-grid scale

motion on the resolved motion in that they dissipate the resolved energy or backscatter energy to
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the resolved eddies. To predict the flow dynamics of the wake behind a turning ship, the standard

Smagorinksy model (Smagorinksy, 1963), based on Boussinesq eddy viscosity hypothesis, has

been used. This model is developed by assuming that the small scales are in equilibrium so that

energy production and dissipation are in balance, moreover the small scales dissipate all the

energy they receive from the resolved scales. This assumption is made to simplify the

phenomena and the algebraic model for the eddy viscosity is,

v 2 =C 5 A2(SiSE,)Y (2.39)

where the filter length scale, A is the volume average box filter used by Deardoff (1970)

usually calculated as the geometric average of mesh spacings in the Cartesian directions, defined

as A = (A•IAX 2AX3 )1 in finite volume formulations (especially for anisotropic grids) and Cs is

the Smagorinsky constant. This constant is determined from the isotropic turbulence decay. It is

interesting to note that the filtering process that's applied through control volume approach may

use a significantly different length scales in different directions due to grid stretching. To see the

influence of grid aspect ratio on filtering process, a model equation is used and different filter

lengths have been applied (Cehreli, 2004). The results showed that the grid size in each direction

influences mostly the degree of filtering in that direction; the influence on the other direction is

much lesser.
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3 THE RFG METHOD

In a Reynolds Averaged Navier-Stokes (RANS) turbulence modeling approach

information about turbulent fluctuations is contained in the time averaged Reynolds stresses of

the form uiu. * These are obtained as an outcome of a turbulence model that links Reynolds

Stresses to mean flow quantities (e.g. k-8 model), or solves modeled transport equations for

each Reynolds stress component (e.g. Reynolds Stress models). However, this is not the case

when the large eddy simulation (LES) methodology is employed since the goal here is to

explicitly resolve the turbulent fluctuations. In LES the inlet conditions can not be derived

directly from experimental results, because of the unsteady and pseudo-random nature of the

flow being resolved, unless, off course, the turbulent intensity is zero at the inlet, which is rarely

the case. This problem becomes more important for spatially developing turbulent flows where

for example the boundary or shear layer thickness changes rapidly. In such cases periodic

boundary conditions can not be specified like in the case of a fully developed channel flow

(Ravikanth and Pletcher, 2000; Akselvoll and Moin, 1995). A similar situation exists when

prescribing the initial conditions over the whole calculation domain. This can be of importance

when the turbulent flow is not steady in the mean (i.e. non-stationary turbulence) and the

transients of the flow are to be resolved. Even for stationary turbulent flows, if realistic initial

conditions are not prescribed, the establishment of a fully developed turbulence takes

unreasonably long execution time. For these reasons it is necessary to initialize the flow-field

with some form of perturbation to provide the initial turbulent conditions. It is important that the

perturbation be spatially correlated, as is the case with the real flow. For external flow problems

the turbulent flow field can be initiated simply by appropriately perturbing the inlet flow-field. In

this case an accurate representation of temporal correlations of the flow-field can be important.

The inlet perturbation propagates throughout the domain and helps trigger the turbulence that is

to be captured. Many applications of LES begin with initializing the flow field to that of a

previously obtained RANS solution. A higher resolution grid is then used with an appropriate

sub-grid-scale model. The Reynolds stress terms provided by the RANS solution can be used to

construct spatially and temporally correlated perturbed inlet and initial conditions. In principle it

is possible to predict turbulence via LES technique by starting from a quiescent flow or with the
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mean flow obtained from RANS. Unfortunately, it takes a very long time for a turbulent flow to

develop spatially and temporally. This is especially true in the case of decaying turbulence in the

absence of strong turbulence generating factors like walls. A reasonably accurate approach to

this problem is used in modeling of boundary layer turbulence (Lund, 1998). It consists in

applying a separate flow solver with periodic boundary conditions to construct the inlet

conditions for the LES/DNS solver. It provides well-formed inflow conditions consistent with

the solution of the Navier-Stocks equation, which makes it particularly suitable for DNS.

However, its implementation may not be straightforward for the problems without well defined

fully developed boundary/shear layers. For some engineering problems it may also be too

expensive in the usage of computer resources and programming effort.

To remedy this problem the inlet and initial conditions are often viewed as consisting of a

mean component and a randomly fluctuating component with the appropriate statistics. Most of

the work done in this direction is based on simplified variants of a spectral method, in which

Fourier harmonics are generated with the appropriate statistics and assembled into a random

flow-field. Realistic turbulence spectra can be realized in this way. In the work of Lee et al.

(1992) for example, a very good representation of turbulence spectra was achieved by using

Fourier harmonics with a random phase shift. This is a rather efficient method to generate the

inflow turbulence with pre-defined characteristics. However, it does not satisfy the continuity of

the flow-field, which may be important in diminishing the non-physical transition region

between the inlet flow-field and the solution provided by the Navier-Stokes solver inside the

computational domain.

A considerable amount of work in random flow generation has been performed in the

area of particle dispersion modeling using the RANS approach (Zhou and Leschziner, 1991;

Zhou and Leschziner, 1996; Li et al., 1994). RANS modeling produces smooth flow fields,

which do not accurately disperse particles that are embedded in the flow. To correct this

turbulent Reynolds stresses are used to generate temporally and spatially correlated fluctuations,

such that the resultant instantaneous velocity can be superimposed on the particles to induce a

realistic dispersion. A number of approaches found in the literature (Li et al., 1994; Bechara et

al., 1994; Fung et al., 1992) are based on a variant of spectral method of generating an isotropic

continuous flow-field proposed earlier by Kraichnan (1970). However, this flow-field does not

satisfy the requirement of spatial inhomogeneity and anisotropy of turbulent shear stresses,
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which may be important in realistic flows. The method of Zhou and Leschziner (1991) complies

with the latter requirement, but the resultant flow field does not satisfy the continuity condition

and is spatially uncorrelated. For homogeneous isotropic turbulence, the initial conditions can

also be constructed as described by Ferziger (1983). The approach is based on a vector curl

operation and forward/backward Fourier transforms, which require a considerable computational

effort. The extension of this method to anisotropic inhomogeneous flows is not trivial. At least

one study presents a successful application of Kraichnan's method to anisotropic flows (Maxey,

1987). The technique is based on filtering and scaling operations applied to the generated

isotropic flow-field to filter only the vectors with the prescribed correlations. Again, the filtering

operation may be expensive computationally. The method presented in this paper is different in

that it is based only on scaling and simple coordinate transformation operations, which are

efficient and fast.

It is the objective of this study to formulate a relatively simple random flow generation

(RFG) algorithm, which can be used to prescribe inlet conditions as well as initial conditions for

spatially developing inhomogeneous, anisotropic turbulent flows. In principle the same

procedure can also be used for initializing direct numerical simulations, but the focus of our

study is on LES, and particle tracking applications. The method takes advantage of the previous

studies in the area of particle dispersion (Li et al., 1994; Maxey, 1987). The RFG procedure is

developed on the basis of the work of Kraichnan (1970), and can be used as an efficient random

flow-field generator in LES and in particle tracking (Shi et al., 2000; Smirnov et al., 2000). The

technique was validated on the cases of boundary-layer and flat-plate shear layer flows and is

further illustrated on the example of bubbly ship-wake flow as one of the most challenging cases

for LES and particle dynamics applications. Performing LES of ship wakes is particularly

difficult given the fact that the whole ship must be modeled to capture a relatively thin 3D-

boundary layer, preferably including the viscous suib-layer. The boundary layer is the source of

the flow dynamics that sets the initial conditions for the wake. A simulation that includes the

whole ship and the wake would require prohibitively large computational resources. The needed

computational resources could be substantially reduced if the appropriate time-dependent inlet

conditions could be constructed at the beginning of the wake, thus avoiding the need to model

the entire ship.
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3.1 Formulation

To generate a realistic flow field we propose a modified version of Kraichnan's technique

(Kraichnan, 1970). The procedure we call RFG (Random Flow Generation) combines the

advantages of the approaches mentioned above and is also computationally efficient. It involves

scaling and orthogonal transformation operations applied to a continuous flow-field generated as

a superposition of harmonic functions. The procedure consists of the following steps.

Given an anisotropic velocity correlation tensor

rj - jiuj (3.1)

of a turbulent flow field {fi (xj,)},=1 ..3, find an orthogonal transformation tensor adj that

would diagonalize rj

amia nr =8rone (,) (3.2)

aikakJ =8.. (3.3)

As a result of this step both al, and c, become known functions of space. Coefficients

c, = {c1 , C2, c3} play the role of turbulent fluctuating velocities (u' , V', w') in the new coordinate

system produced by transformation tensor av. The new algorithm is as follows:

Step (i): Generate a transient flow-field in a three-dimensional domain {v,(Xj,)j=L.3

using the modified method of Kraichnan (1970)

1 2 N
vi (', t) = [p7 cos(/k"j + co),) + q7 sin(k'jj + ao),)] (3.4)

IN ,

.xj = t l / 1 = c

1' T 'r CO

pn =§1 m4'kZ, q7 =Snm kn (3.6)

ý',n,",co, c-N(0, 1), k; EN (0, 1/2)

where 1, r are the length and time-scales of turbulence, 6,k is the permutation tensor used

in vector product operation (Spain, 1965), and N(M, c) is a normal distribution with mean M

Sxi , Repeated sub-indexes imply summation, parentheses around indexes preclude summation.
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and standard deviation or. Numbers k,, co, represent a sample of n wave-number vectors and

frequencies of the modeled turbulence spectrum

E(k) = 16(2)1 /2k4 exp(-2k 2 ) (3.7)

Step (ii): Apply a scaling and orthogonal transformations to the flow-field v, generated in

the previous step to obtain a new flow-field u,

w, =c () V) (3.8)

u, =akwk (3.9)

The procedure above takes as input the correlation tensor of the original flow-filed rj and

information on length- and time-scales of turbulence (1,r). These quantities can be obtained

from a steady-state RANS computations or experimental data. The outcome of the procedure is a

time-dependent flow-field u,(xj,t) with correlation functions uiuj equal to re, and turbulent

length/time scales equal to 1, r. As will be shown later this flow-field is also divergence free for

a homogeneous turbulence and to a high-degree divergence-free for an inhomogeneous

turbulence. By virtue of Eq. (3.4), spatial and temporal variations of u1 follow Gaussian

distribution with characteristic length and time-scales of 1, r. Sampling for a different spectrum

instead of Gaussian can also be used in different problems.

Equation (3.8), provides the scaling, and (3.9) - the orthogonal transformation. Scaling

factors c, obtained in step 2 represent the scales of turbulent fluctuations along each axis. They

do not depend on time, whereas vectors v, and w, represent time-dependent velocity

fluctuations. Both the scaling factors c, and the transformation tensor aj are computed in step 2

using efficient matrix diagonalization routines that can be found in standard libraries or

programmed specifically for a 3D case to boost the performance. By construction, the correlation

tensor of the flow-field produced by Eq. (3.4) is diagonal

V, vi 5 (3.10)

The flow-field w, produced after the scaling transformation (3.8) is divergence free for a

homogeneous turbulence and nearly divergence free for an inhomogeneous turbulence, as is

shown by the following estimate
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1, ,1 , I , , ,!l I I I I I I I I I I

Wi,.i = Ci'i Vi + Ci Vi," ý Ci V,, =

I 2NC X t Xi
[_,nN k7 sin(-c k. -t) q" , cos(c k + co, t)]=O (3.11)

Sw,, WI 0 (3.12)

where we neglected all derivatives of c, which are slowly varying functions of Y, and

used the relation of orthogonality between kn and p,, q,

k,i p, =k," q7=0

which follows from the way vectors p7, q7 are constructed in (3.6). For a homogeneous

turbulence the approximate equality in (3.11) will become a strict equality, leading to a

divergence free flow-field. In the case of inhomogeneous turbulence the justification for

neglecting the derivatives of c, comes from the fact that c, are derived from the correlation

tensor r,, which is produced by the time-averaging operation in (3.1). As a result of this

averaging rj is independent of time and may be a slowly varying function of space as compared

to the fluctuating velocity u,

Ilc,,iI Vll J,k 11"' << II (3.13)
where H denotes an appropriate function norm. Relation (3.13) justifies the first

approximate equality in (3.11), leading to an approximate satisfaction of continuity.

The orthogonal transformation (9) preserves the solenoidal (divergence-free) property of

the flow-filed

uij = aijakiwj,k = 45jkWj,k = Wj,j = 0 (3.14)

where we used relation (3.12) and the rule of transformation of derivatives: f', = a1 1f 1.

Thus, the generated flow-filed u, is divergence-free within the accuracy determined by (3.13).

At the same time the new flow field satisfies the anisotropy of the original flow-field ii(i,t), i.e.

U1Ui =a,.iwm anwn =

aimajn Wm w,, = aimajnCmCnVm Vn =

amajnCmCn5mn = amai, mn (cn ) 2 = ryJ (3.15)
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Where we used relations (3.3), (3.8) and the last equality was obtained by solving (3.2)

for r.. Thus, the obtained flow-field ui,t) is transient, divergence-free, inhomogeneous, and

anisotropic with the pre-defined correlation coefficients.

Considering the flexibility and computational efficiency of the algorithm, we should note

that the random spectrum sampling in Eq. (3.6) can be performed separately from the actual

assembly of the vectors in Eq. (3.4). This leads to a higher computational efficiency, since the

spectrum sampling can be done outside of the main time iteration loop of the flow solver with

only the assembly of fluctuating velocity components left inside the time loop. This efficiency

comes at a price of extra memory requirements for storing the random sample. The size of this

sample is equal to 10. N, where N is the number of harmonic functions representing the

turbulent spectrum in (3.4), which is independent of the actual grid size. So, for N = 1000 and

double precision arithmetics only 80KB of computer memory will be needed to store the

spectrum for any grid size. This offers a flexibility of shifting the priorities between the high-

accuracy spectrum generation and speed.

The RFG procedure can be extended to include the anisotropy of turbulence length-scale.

In this case instead of using a scalar value for / in (3.5) one can define a vector 1,. An

appropriate re-scaling would be necessary to preserve the continuity of the flow-field. This can

be done by introducing another scaling transformation, similar to (3.8), which will guarantee that

the resultant flow-field is divergence-free.

It should be noted that the turbulent flow-field obtained by the RFG procedure does not

represent the solution of a complete Navier-Stokes (NS) equation, but rather of a continuity

equation only. This is not a severe limitation, since the procedure is used mainly in the context of

unsteady 3D computations, like LES, to generate initial or inlet boundary conditions. These

conditions are given on three-dimensional subsets of a four-dimensional computational domain:

two space and one time dimension for the inlet flow-filed and three space and zero time

dimensions for the initial flow-field. As such these flow-fields do not have to satisfy the NS

equation, since for an unsteady LES this equation is defined on a four-dimensional, 3-space x 1-

time domain. However, the boundary conditions should be reasonably continuous, so that the NS

solver will gracefully adjust the solution to the boundary conditions within the computational

domain. This is exactly what the RFG procedure is designed to do. In addition to this it provides
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the desired statistical characteristics of turbulence at the boundaries, like anisotropy and

inhomogeneity, which is of importance for LES and unsteady particle-dynamics computations.

Naturally, this approach to generate the inlet/initial boundary conditions is an

approximation and should be used only when the statistical features of turbulence at the

boundaries are of special concern while the solution of a full unsteady NS equation beyond the

given boundaries is a practical impossibility.

3.2 Validation of RFG Procedure

The first test of the procedure was for a homogeneous isotropic flow field. The Fourier

space was sampled with 1000 wave-numbers selected according to Eq. (3.4). Figures 3.1(a),

3.1(b) shows the snapshot of a homogeneous isotropic velocity field. Fig. 3.1(a) shows the

vorticity field in a cross-section of the computational domain, and in Fig. 3. 1(b) the velocity

distribution is presented. Statistical post-processing of velocity correlations was applied to the

generated flow-field in order to verify that the velocity field was isotropic. For this purpose a

turbulent flow-field with the characteristic time scale of 10-s was generated from the Fourier

spectral sample of 1000 wave-vectors (Eq. 3.4). The fluctuating velocities were sampled at the

rate of 105 Hz. Correlations of the fluctuating velocity components were computed at one point

in space by averaging over time. Fig. 3.4 shows the behavior of the velocity correlations as a

function of the averaging time-interval. The figure indicates convergence to the values

corresponding to Eq. (3.10).

The procedure was next applied to a homogeneous anisotropic flow field with c, selected

from typical boundary layer distributions. This type of anisotropy leads to higher amplitudes of

the velocity vectors in one direction relative to the other (Fig. 3.1 (c)). The procedure was also

used to generate the flow-field with anisotropic length-scales (see comments in Sec. 3.1). In this

case the length-scale of fluctuations was selected differently in different spatial directions. This

produced a flow-field where the structure of the velocity fluctuations seemed stretched in one

direction (Fig. 3.1 (d)).

Next we applied the procedure to the case of a non-homogeneous anisotropic boundary

layer. Figure 3.1(e) shows a snapshot of the velocity magnitude in the three-dimensional

boundary layer. An additional empirical factor related to the boundary-layer thickness was
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introduced in this case to better account for the intermittency effects. Figure 3.2 shows the

random signal produced by the RFG procedure sampled at different locations above the

boundary plane. As can be seen from that figure both anisotropy and inhomogeneity are evident

in the fluctuating components. Experimental and direct numerical simulation (DNS) data do exist

for this flow field, providing both mean and fluctuating velocity profiles, as well as turbulent

correlations. The turbulent boundary layer is two-dimensional in the mean, though turbulent

fluctuations exist in all three dimensions, i.e. C, = u', c2 = v', and c3 = W' for the axial, vertical,

and tangential directions, respectively. In addition, the correlation involving the axial and

vertical velocity fluctuations is significant. The Reynolds stresses were obtained from (Hinze,

1975) where the classical experiments of Klebanoff (1954) are summarized.

A number of realizations N, of the boundary layer was computed using the turbulence

time scale of turb 10-' s, length-scale of l1,b =10-', and a sample size of 1000 harmonic

functions. The wave-vectors for these functions were taken from a normal distribution with the

mean - t,,,'. The boundary layer thickness (c5) was allowed to grow according to the following

empirical relation:

(5=0.16.x -j= 0.16.x. Re2"l7 (3.16)

where x is the axial distance and U0 is the free-stream velocity, which was set equal to

1.0 m/s. The cross correlation (uv) was normalized with the friction velocity UT, which is itself

a function of U0 . The boundary layer thickness was randomly perturbed with a continuous

function using the same spectral sampling technique as for the velocity fluctuations to emulate

intermittency.

Fig. 3.3 shows the vorticity field of the generated boundary layer flow-field compared

with LES data (Speziale, 1998). As can be seen from the figure, by choosing the turbulence

length-scale correctly, one can achieve a good resemblance in the flow structure simulated with

this semi-analytic approach and a LES flow-field.

In Fig. 3.4, the convergence of the random sampling process is illustrated. After about

500 samples the statistics converge to the prescribed stationary correlations.
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To compare the simulation results with the experimental data the velocity profile along a

vertical line in the center of the axial plane was stored for each simulated realization of the flow-

field. The profiles of the thousand time realizations were then used to calculate the average

fluctuating components in each direction, as well as the corresponding cross correlations. These

are compared to the original experimental data in Figure 3.5. As can be seen, the experimental

data is well reproduced.

The divergence-free property of the generated flow-filed was tested by computing the

divergence as a function of turbulence length-scale for three cases: isotropic velocity field,

generated according to the original Kraichnan method (Kraichnan, 1970; Li et al., 1994),

anisotropic velocity field, generated according to the modified Kraichnan method, using Eqs.

(3.4)-(3.5) with k"=-k, and anisotropic velocity field generated according to the RFG algorithm

based on Eqs.(3.2)-(3.9). For this test case the anisotropy of different fluctuating velocity

components was selected to be given by a ratio: 0.1:1.4:1 for cp, c2 , and c3 respectively.

The divergence test was done on a cubic grid. For each grid-cell the divergence was

computed as the sum of fluxes through cell faces. The Fourier space was sampled with 1000

wave-numbers selected according to Eq. 3.4. Fig. 3.6 depicts the computed divergence as a

function of the ratio of turbulence length-scale to grid cell size. The result represents an average

over 10,000 realizations of the flow-field. As can be seen from the figure in all three cases the

continuity error decreases with the increase of the turbulence length-scale. This decrease is

considerably slower for the anisotropic flow-field generated according to the original Kraichnan

method compared with the the cases of isotropic flow field and anisotropic flow generated with

RFG procedure. It should be noted that the theoretical continuity error in the isotropic case is

zero. The discrepancy between this case and the anisotropic case computed with the Kraichnan

method is due to the violation of continuity of that method in the presence of anisotropy. In

contrast, the flow-field produced with the new RFG procedure has practically the same as for the

isotropic case. This means that the anisotropic flow-field generated by the RFG procedure is

essentially divergence free. At the same time this shows the importance of scaling transformation

for kj in (3.5) for the fulfillment of continuity. The upper divergence limit in the figure occurs

when the grid cell-size is comparable or greater than turbulence length-scale 1. It is due to the

integration errors, which in this limiting case can be estimated from the relation lu 1I.
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Another validation of the method was done on a flat-plate wake flow, which is a well

documented case in the literature (Ramaprian et al., 1981). In this case the simulation starts from

a plane located behind the plate in the wake region (Fig. 3.7). The inflow boundary is generated

using RFG with an input from the experimental data (Ramaprian et al., 1981), including mean

velocity Ur, the turbulence intensities Urm,,vs ,Wrms and the shear stresses uv. In this way we

can provide realistic inflow boundary conditions including the turbulence characteristics created

by the plate, which is an important factor for LES. The length of the plate is L = 1.829m. The

inflow boundary is located at 19.5mm (x/L = 0.01) measured from the rear edge of the plate.

The computational domain size is 1.Om x 0.2m x 0.6m in x, y and z direction, respectively. The

corresponding grid sizes are 82x50x50. Non-uniform grid is used in both x and y directions

with stretching not exceeding three percent2. The size of the smallest cell is

0.6mmx0.2mmxl.2mm while that of the biggest cell is 50mmx8mmxl.2mm in x, y, z

direction, respectively. Neumann boundary condition is applied at the outflow boundary.

Symmetry boundaries are used in a vertical direction and periodic boundaries are used in the

span-wise direction. Central difference numerical scheme and Smagorinsky model are applied in

this study.

Fig. 3.8 presents the comparison of the turbulent characteristics between the simulation

and the experimental results at the inlet plane. They agree very well except in the central region.

The reason for the discrepancies is that the grid is relatively coarse in the center, which leads to

the smoothing of very sharp gradients. The overall difference is under 1%. It should be noted

that the agreement is so good because the comparison is given for the inlet plane where the RFG

procedure was designed to reproduce the turbulence quantities exactly.

Fig. 3.9(a) shows the energy spectrum at the inflow boundary. A sharp cut exists at wave

length 0.01, which matches the length scale we selected for RFG. Fig. 3.9(b) and Fig. 3.9(c)

show the energy spectrum at x = 0.16 and x = 0.53 respectively, which were produced after the

application of LES inside the domain. From these figures, one can see that a good portion of the

inertial range is captured. With the grid becoming coarser in the wake, only large wave lengths

can be resolved.

2In this study, x represents stream-wise, y - vertical and z - span-wise directions, respectively
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Next we investigated the turbulence intensities downstream from the plate. From Fig.

3.10 to Fig. 3.13 the Reynolds stresses computed along y - direction at different x locations are

compared with the experimental results. The agreement looks good although more quantitative

studies would be appropriate. Near the very beginning of the wake most of the fluctuations can

be captured. Later in the flow field, the percentage of the resolved turbulence is becoming small

due to the coarser grids. It can be noted that both v' and uv at the second x-station are higher

than those at the first one. This effect has been investigated and discussed by Nakayama and Liu

(1990) where they attribute it to a near wake phenomenon. Figure 3.14 shows the decay of the

turbulent kinetic energy along the center line of the wake. Most part of the turbulent kinetic

energy has been captured. We anticipate that with finer grid sizes the turbulence resolution will

be much better.

3.3 Application of RFG procedure

3.3.1 Boundary Conditions for LES/RANS

As an illustration of the technique we used it first in conjunction with the RANS and LES

methods to simulate turbulent fluctuations in a ship wake. The high-Reynolds number character

of ship wakes (Re -10' - 108) makes it rather time-consuming to perform full-scale LES of these

flows. In this situation a combination of a RANS and the RFG technique can offer an efficient

way to restrict the LES runs to the wake region only.

Figure 3.15 shows a snapshot of an unsteady turbulent flow-field in the inflow-plane

serving as inlet condition for LES of a ship wake. Initially a steady state RANS solution is

obtained (Figs. 3.15(a), 3.15(c)), providing turbulent stresses r, and time-scalesco,. Next the

RFG procedure is used to generate continuous time-dependent inlet conditions with the given

turbulence characteristics (rj, co,, Figs. 3.15(b), 3.15(d)).

In another application (Fig. 3.16), namely, turbulent flow around a ship-hull was

produced as a superposition of the mean flow velocity, computed with a RANS method (k-c)

(Larreteguy, 1999) and the fluctuating velocity obtained with the RFG procedure. This flow-field

can be used to initialize the unsteady LES and for particle tracking applications (see Sec. 3.3.2).
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As noted earlier, the flow generated in both cases may not necessarily represent realistic

instantaneous turbulence vortex dynamics at the respective boundaries, but statistically the flow-

field will reproduce the turbulent shear stresses and time/length scales correctly. Furthermore,

the statistics of turbulent fluctuations imposed at the space/time boundaries may not necessarily

be preserved by the flow-solver inside the domain. That is, there may be a transition region

between the boundary and the inside of the domain where the flow-solver will adjust to the

boundary conditions. However, if the boundary conditions were generated using continuous

functions and realistic turbulence quantities and spectra, this transition region will be small and

the technique may still present a good alternative to solving the complete NS equation in a larger

computational domain.

3.3.2 Particle Dynamics Modeling

Particle tracking in transient flows is usually a time-expensive computational procedure.

In the situations when the turbulent flow is computed using RANS models it is possible to

compute particle dynamics in a steady-state mean flow field and add a fluctuating component to

particle velocities. When LES technique is used particles should follow a time-dependent flow-

field and the fluctuating component should still be added to it at smaller turbulence scales. In

both cases the fluctuating component is derived from the turbulence intensity and length-scales,

provided by the turbulence model.

Bubble-dynamics in a turbulent flow is described in Chapter 5 in detail. Here, we briefly

present an illustrative example of particle-tracking application in a ship wake.

Simulations of bubbles in ship wakes requires account of several processes, like drag, lift

and buoyancy forces, bubble dissolution in water, bubble interaction with the free-surface

(including bubble disappearance at the surface and bubble generation due to air entrainment). In

some cases, because of uneven bubble distribution (e.g. local clustering), the coalescence and/or

breakup of bubbles may be important. Because of this non-uniformity, sharp gradients in bubble

concentration, and low volume fraction of the bubbles Lagrangian approach to model bubble

dynamics is often preferred. Compared to the two-fluids method (Elghobashi et al., 1993, 1994,

1996; Crowe et al., 1998) the Lagrangian approach requires less empiricism and is more suitable

for parallel implementation. We use a particle dynamics (PD) algorithm based on efficient
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particle tracking, population dynamics and a novel particle interaction techniques (Smirnov et

al., 2000, 2001).

To simulate bubbles in a ship-wake we use the combination of RFG and PD algorithms.

Fluid velocity at the location of every bubble was approximated as a sum of the mean fluid

velocity obtained from the RANS calculations and the fluctuating part computed with the RFG

procedure. Since RANS solution is given only at the Eulerian grid-node locations and bubbles

follow Lagrangian trajectories, an interpolation is required to approximate the mean velocity at

bubble's current location. No such approximation is necessary for the fluctuating part, since the

RFG procedure defines a flow-field at every point in space and time. In the simulation the

bubbles were injected at a single point close to the ship hull where the turbulent kinetic energy

was near its maximum (Fig. 3.17). Drag, buoyancy and added-mass terms were included (Crowe

et al., 1998; Crowe, 1998). A total of 10000 bubbles of 100 microns in diameter were

continuously injected into the domain. Two seconds of real-time were simulated for the ship-

length of 6m traveling with the speed of 3m/s. The figure shows the tendency of particles to

agglomerate in dense groups. The characteristic sizes of these groups are in many instances

smaller than the grid-cell size. This reflects the very sub-grid nature of the RFG method, which

enables to capture finer details of particle dynamics than can be resolved on an Eulerian grid.

3.3.3 Large-Eddy Simulations (LES)

In Large Eddy Simulations the RFG procedure can be used to generate random inflow-

conditions or serve as a subgrid-scale model. There is an extensive literature regarding LES

techniques (Piomelli, 1999). To reach a state of developed turbulence in LES simulations require

a substantial computational time. Regarding this there are two important problems in LES of a

high-Reynolds number turbulence that can be solved with the RFG procedure: (1) assigning

initial flow-field distribution and (2) assigning turbulent inflow conditions. Conventionally, the

first problem is dealt with by increasing the transition phase of the simulation and the second -

by extending the size of the computational domain. Consequently, the remedy comes at a price

of a longer execution time and higher memory requirements. By using a RFG procedure to

generate the initial conditions one can cut down on the execution time considerably. For

stationary turbulence the approximate nature of the initial velocity distribution with respect to the
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solution of the NS-equation is of little significance, since these discrepancies are corrected in the

first few iterations of the NS-solver.

The problem of inlet conditions could be even more important, since extending the

computational domain will increase both execution time and memory requirements of the

simulation. In this case RFG can provide reasonable inflow conditions with the pre-determined

anisotropy properties. Here again we illustrate these advantages on the example of a ship wake.

A complete LES simulation of the wake would normally require simulating the unsteady flow

around the ship hull and in the wake region. Employing the RFG procedure for the inlet

conditions, we can restrict LES run to the wake region only. In this case the information on

turbulence levels and anisotropy at the inlet plane, required by RFG, can be obtained from

relatively inexpensive RANS calculations.

After validating this approach on the case of a flat-plate (see Sec.3.2), we applied it to the

wake of a model ship (Navy 5415 model (Carrica et al., 1998)). As in the flat-plate case the

inflow boundary was constructed using the data from RANS calculations (Larreteguy, 1999)

(Fig. 3.15). The turbulent normal stresses are based on the kinetic energy. The tinle scale and

length scale which are used in generation of the perturbation at the inlet plane are selected from

the corresponding relation between the turbulent kinetic energy and its dissipation rate provided

by the RANS calculations.

Figure 3.18 shows the instantaneous stream-wise velocity contours and vertical vorticity

contours, respectively, in a plane parallel to the free surface, where some of the turbulence

structures in the wake can be observed. Small-scale turbulent structures can be seen in both

figures in the near wake region. These structures tend to increase in the far wake. This can be due

to the following two factors: (1) In the very near wake, fine grids are applied so that smaller

turbulence structures are captured. (2) Physically, larger turbulence structures include more

energy so that they can last longer, while smaller turbulence structures have less energy and die

quickly by dissipation. Another phenomenon is the increase of the width of the wake in the

downstream direction. The mean velocity profile (not shown here) also supports this result.

Capturing of these phenomena testifies to the validity of our approach of computing the inflow

boundary.
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3.4 Discussions

The analytical method of Kraichnan (1970) was modified to account for the effects of

inhomogeneity and anisotropy of turbulent shear stresses. The technique was realized in an

efficient random field generation (RFG) algorithm which was tested on the cases of isotropic

turbulence, channel flow anisotropic flows, boundary layer inhomogeneous anisotropic

turbulence (Celik et al., 1999) and flat-plate wake flow. The simulated flow fields are transient in

nature and satisfy the conditions of continuity and anisotropy for homogeneous flows and to a

good approximation satisfy these conditions for inhomogeneous flows.

The RFG procedure offers a relatively inexpensive way to generate random velocity

fluctuations, representing a turbulent flow-field. Since the generated velocity field satisfies the

relations of continuity and anisotropy it is a far more realistic representation of turbulence than

can be obtained with a simple Gaussian velocity distribution using a random-number generator.

Because the flow-field produced by RFG may not satisfy the momentum equations it is still an

approximation. However, in some applications this approach may offer a simple and reasonably

accurate way to model turbulence without solving the complete Navier-Stokes equation, which

would require much more memory and execution time.

In practical applications the RFG procedure provides the flexibility of a trade-off between

the accuracy of representing a turbulent spectrum and memory/time requirement. By increasing

the spectral sample size N in Equation 3.4 one can increase the accuracy of reproducing the

turbulent spectrum at the cost of longer execution time and higher memory utilization. In

addition to that, since the velocity field is calculated by analytical functions it is given at any

point in space and time, and not just at the grid nodes and at discrete time values. Because of this

quality, the method has a potential as a subgrid-scale model for LES or RANS simulations and in

modeling turbulent particle-laden flows, although its validity in this respect would require a

separate study.

Advancing the realistic LES run to the stage of developed turbulence may require days of

computation time3 . Similarly, to obtain realistic turbulent inflow conditions may require the

extension of the computational domain with the corresponding increase in computer time and

memory requirements. The RFG technique can reduce the flow initialization time to several

3Our benchmarking was performed on the 533 MHz DEC-Alpha processor
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hours and can be used to continuously supply the turbulent inlet conditions close to the domain

of interest, thereby reducing time and memory requirements of the LES simulations.

This study showed the feasibility of applying a hybrid LES technique in combination

with RFG algorithm to high-Reynolds number flows, like those of ship wakes. It is also shown

that the technique can be used effectively in conjunction with a Lagrangian particle dynamics'

approach, is appropriate for bubble tracking in the wake and can be easily incorporated into LES

codes.
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Figure 3.1: Simulated flow-fidld using RFG
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Figure 3.2: Instantaneous velocity vs time step at different locations, y* = y/8

37



20 40 60 60 100 120 140 160 tS0 200

(a) LES (Speziale, 1998)

(b) RFG (large length-scale)

(c) RFG (small length-scale)

Figure 3.3: Vorticity contours in the boundary layer
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... . . .

Figure 3.16: Turbulent velocity around a ship hull computed with the RFG algorithm. (View from

below.)

Figure 3.17: Bubbles in a ship-wake. (Background shadihg is according to the turbulent kinetic

energy.)
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(a) Stream-wise velocity contours of the simulated wake flow
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(b) Instantaneous vertical vortidity contours

Figure 3.18: LES of a ship-Wake flow
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4 SHIP WAKE SIMULATIONS

The subject of this Chapter is the application of the numerical schemes and SGS models

described in previous chapters to the calculation of turbulent ship wake flows. Starting from the

review of the current research status of ship wake hydrodynamics, this Chapter leads to the

summary of the strategies described in previous chapters. Several cases have been simulated and

results are analyzed and assessed.

Ship hydrodynamics has been the subject of numerous studies in the past. Both

experimental and numerical achievements have been made. Since real ships can not be fitted into

tow tanks, it is common practice to base the research on small-scale models of real ships.

Experimentally, in the 60's or 70's of the last century, most of the experiments concerned the

ship surface drag force, or propeller influence. Recently, experiments are more focused on the

investigation of micro dynamics of flow around ships, such as wave dynamics, turbulence

parameters, bubble dynamics, etc. Although experiments can provide useful results, there are

many limitations encountered in practice. First, it takes a very long time to design, set, and

perform the experiment. Secondly, it is very expensive. Thirdly, it can not provide very detailed

information due to the limited space to arrange the measuring devices or detectors. Benefited

from the rapidly developing capabilities of computers, the modem research in computational

hydrodynamics has replaced the more elegant, but less general, analytical methods (Larsson et

al., 1998). Since ship wake flows are the main subject of this study a separate but concise review

is presented next.

4.1 Experiments on Turbulent Ship Wake Flows

In a earlier study of ship wake flows, Naudascher (1965) found that the wake width has a

power law behavior. This was supported by Milgram et al. (1993). By carrying out field

measurements for ship wakes, they found that the wake width has a power law behavior of the

type x 115 where x is a distance from the ship stem. Reed et al. (1990) summarized the

hydrodynamics research of ship wake flows both in experimental and numerical areas and

pointed out the hydrodynamic wake schematic shown in Fig. 4.1. Benilov et al. (2000) found that
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even in the far wake the ship wake turbulence is still well detectable and the Kolmogorov range

can be identified. Hoekstra (1991) gave relatively comprehensive tests of turbulence parameters

in which the wakes of different ship models were studied. The vortices generated by the ship

body, named bilge vortices, were analyzed, and it was found that these vortices can be avoided

by hull form adjustment but this was found to be impractical.

Stem et al. (2000) present some results for CFD validation, but the experiments providing

turbulence intensities were still underway. For this study it was not possible to find the necessary

experimental information to initialize an LES study, or to build the inflow boundary condition

including the turbulence features induced by the ship hull. Thus the current simulation is based

on RANS results.

4.2 Computations of Turbulent Ship Wake Flows

Most of the computational fluid dynamics- efforts applied to flow past ships are based on

Reynolds-Averaged Navier-Stokes (RANS) equations utilizing various turbulence models

(Sotiropoulos and Patel, 1995; Paterson et al., 1996; Ratcliffe, 1998). The commonly used

models include k-c, k-(o and algebraic stress models. RANS is often quite adequate for mean

flow predictions, but provides only limited information about turbulence characteristics and

almost no details on large-scale unsteady structures of the flow field. The LES technique, on the

other hand, was designed to capture the unsteady behavior of at least the large coherent turbulent

eddies. There is hardly any study in the literature where LES has been applied to flow around

ship-hulls including the wake. The main reason obviously lies in the fact that large computer

resources are required. In LES, the energy containing eddies of the flow are computed explicitly,

while only the more universal (isotropic) small eddies are modeled. Thus very fine grids have to

be applied in order to resolve the boundary layer near the wall where the turbulence length scales

tend to zero as the wall is approached.

However, in some applications, like bubble dynamics modeling, it is still necessary to

resolve coherent flow structures - large turbulent vortices and eddies. In RANS simulations,

especially those using two-equation models such as k-F model, these unsteady flow features are

usually smeared out.
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Since it can be computationally prohibitive to include both the ship hull and the wake in

LES, it would be desirable for the purposes of pure wake simulations to start the computations

somewhere in the near wake excluding the ship hull. However, this technique, also known as the

Initial Data Plane (IDP) approach (Hyman, 1998; Paterson et al., 1996; Dommermuth et al.,

1996) can introduce considerable errors (Hyman, 1998) - not surprisingly though, since the body

generating the wake is not included in the non-steady LES simulations.

In principle it is possible to predict turbulence via the LES technique by starting from a

quiescent flow or with the mean flow obtained from RANS. Unfortunately, it takes a very long

time for a turbulent flow to develop spatially and temporally without any initial perturbation.

This is especially true in the case of decaying turbulence in the absence of strong

turbulence generating factors like walls. A reasonably accurate approach to this problem was

used in modeling of boundary layer turbulence (Lund et al., 1998). It consisted of applying a

separate flow solver with periodic boundary conditions to construct the inlet conditions for the

LES/DNS solver. It provides fully turbulent inflow conditions consistent with the solution of the

Navier-Stokes equation, which makes it particularly suitable for DNS. This method was used

later by Wang and Moin (2000) to compute the inflow boundary for simulating a trailing-edge

flow. However, its implementation may not be straightforward for the problems without well

defined fully developed boundary/shear layers. For some engineering problems it may also be

too expensive in terms of computer resources and programming effort.

Another numerical simulation with time dependent turbulent inflow boundaries was

performed by Voke and Potamitis (1994) for a wake of a flat plate. In their simulation, the inflow

boundary information was derived from a separate simulation, called the precursor simulation, in

which a low Reynolds number turbulent boundary layer was simulated. At the inflow plane of

the wake simulation the three velocity components were specified by reading one transverse

plane of velocity data from the boundary layer simulations at each time step. The transverse

plane was selected at a location where the flow was fully turbulent but with a safe distance from

the outflow boundary of the precursor simulation. Two separate sets of velocity data of the

boundary layer were needed to provide inflow conditions for the upper and lower halves of the

wake simulation. To achieve this they used the data of the same precursor simulation of the

boundary layer at well-separated times in it's history. This method is costly and only applicable
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to parabolic wake flows. In application to the ship wake flow it would require LES of the flow

around the hull itself which is impractical.

To achieve a higher accuracy of ship-wake simulations and still remain within realistic

constraints on computer resources, the whole problem of computing the flow past ships and their

wakes is divided into two parts: steady-state RANS calculations around the ship hull, and non-

steady LES of the wake. In this approach the LES starts from a plane in the near wake where the

inflow conditions are retrieved from the RANS results. This is similar to the IDP approach used

by Hyman (1995) and Dommermuth et al. (1993) where the data reflects the mean flow, mean

turbulence quantities and the scalar field at this plane. In the present approach, a wider range of

turbulent quantities at the inlet plane are allowed, which include length- and time-scales, and all

nine components of the turbulent shear-stress tensor (only six components to be computed due to

symmetry), thus providing anisotropic and inhomogeneous turbulent inlet conditions. The

technique is based on a Random Flow Generation (RFG) algorithm (Celik et al., 1999; Smirnov

et al., 2001b; Shi et al., 2000b), which is applied to generate the inflow turbulence on the basis of

the information obtained from experiments or RANS calculations. The generated velocity

fluctuations satisfy instantaneous continuity equation, and the turbulence statistics (Reynolds

stresses) are prescribed a priori. Thus in some sense, although the LES starts at a plane behind

the body, the influence of the body is implicitly included. The features of the generated flow-

field such as continuity, anisotropy and inhomogeneity make the RFG method also well suited

for setting the initial conditions for LES.

In the present simulations anisotropic, inhomogeneous, unsteady IDP conditions were

applied. Thus the flow develops according to the dynamics prescribed by the Navier-Stokes

equations without forcing and it is believed more reasonable in the near wake. This approach

differs from that of Dommermuth et al. (1996) which is appropriate for the far wake field

(Hyman, 2001).

To describe the dynamic behavior of the turbulence in the ship wake, in another study

(Benilov et al., 2000) made the following assumptions:

The wake turbulent kinetic energy significantly exceeds the upper layer turbulence that

reduces the turbulent wake problem to the turbulent region development in a non-turbulent

liquid.

53



The main source of turbulence is a moving ship which means that all interactions

between the wake turbulence and environment do not contribute in the wake dynamics and allow

the problem to be reduced to the shear-free turbulence model.

Through all this study, those assumptions were taken to simplify the problem which is to

perform LES on the wake flow of the ship model DTMB 5415 (5512).

4.3 Ship Wake Simulations on a Straight Track

The ship wake simulations in the present study are for the ship model DTMB 5512, a

smaller ship model scaled from DTMB 5415 which are well known in the ship hydrodynamics

community. Model 5415 is a towing tank model representing a modem naval combatant. It was

constructed out of wood and measured 5.72 m (18.767 ft) between perpendiculars. Model 5512

measures 3.04 m (10.000 feet) between perpendiculars. It is an appended version of 5415, with

shafts, struts, rudders and propellers. However in this study it has been simplified as a bare hull

model. The geometry of this ship model is shown in Fig. 4.2. Note that this picture is not scaled,

and it is only used to show the profile of the ship model.

The Reynolds number is 4.65x10 6 and the Froude number is 0.28. The length, L, of the

ship model is 3.048m. The ship is located on the region of x/L = 0 to x/L = 1.0. The inflow

boundary is located at x/L = 1.05, a small distance downstream of the rear end of the ship. The

computational domain size is 1.5m x 0.3m x 0.6m in x, y and z direction, respectively, with the

corresponding grid size of 162 x 50 x 66 (Fig. 4.2). For convenience, the streamwise direction

(x) of the computational domain is marked from 0 to 1.5 (x = 0 corresponding to x/L = 1.05,

where the inlet plane is located). Non-uniform grid is used in both x and y directions with

stretching not exceeding one percent. The size of the smallest cell is 0.0015x0.0028x0.0068

while that of the largest cell is 0.028x0.007x0.012 in x, y, z direction, respectively.

We have also performed simulations with various other coarser grids. Results from those

showed consistent trends in increased resolution of finer structures in the flow field and turbulent

kinetic energy as the grid cell size decreased. Here we present the results from the finest grid

resolution we were able to achieve on a single processor.
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4.3.1 Boundary Conditions

The inflow boundary is generated using the RFG method in conjunction with the RANS

calculations (Stem & Wilson 2000), providing the mean velocity Urn, the turbulence kinetic

energy k and the specific dissipation co. The time scale T can be taken proportional to 1/MO. The

length scale can be calculated from k and Co. In this study, the length scale and time scale used in

RFG were selected as constant. The length scale was 0.02 of the ship length, and the time scale

was 0.001, non-dimensionalized by free stream velocity and ship length. These numbers were

selected so that the turbulence length scale is about 15% of the ship width. Neumann boundary

condition was applied at the outflow boundary. Symmetry conditions are used in y direction and

periodic boundary conditions are used in the spanwise (z) direction. At the free surface slip in x

and z directions is allowed but the velocity component normal to the free surface is set to zero.

As such the free surface is approximated as a moving flat plane.

The periodic boundary conditions in the span-wise direction were selected for the reason

of preserving the possible lateral fluctuations caused by unsteady motion of large eddies. It is

also more exact than the zero gradient boundary condition if applied to the boundaries in

spanwise direction. Any other boundary condition would probably dampen that motion and

introduce artificially high subgrid-turbulence levels at the boundaries. The boundary conditions

at the outlet were actually of a free-gradient (zerostress) type.

The numerical schemes and SGS model used in the ship wake simulation are the same as

in the flat plate wake (Shi, 2001; Smirnov et al., 2001 a).

4.3.2 Results and Discussion

The streamwise vorticity contours at different planes are shown in Fig. 4.3 and the

contours of the vertical component of vorticity are shown in Fig. 4.4. Fig. 4.3 shows that

concentrated vorticity decreases with axial distance, and in the far wake vorticity is only

concentrated near the free surface, while the size of the wake increases in axial direction of the

flow. It is interesting to note the two distinctly concentrated vorticity streaks away from the

center line of the wake (Fig. 4.4). These resemble the bilge vortexes (Reed et al 1990) generated

by the ship-hull Fig. 4.1. The streamwise velocity contours at a plane near the free surface are

shown in Fig. 4.5. It is interesting to see that the vorticity wake is slightly wider than that of the

velocity wake.
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Figure 4.1: a) Hydrodynamic wake schematic showing ftijor large-scale contributors to the wake

(Reed et al. 1990), b) The schematic of the ship-wake

A comparison with experimental results reported by Reed et al. for the same ship model

(1990) revealed a qualitative agreement. In particular the axial velocity contours at the cro ss-

section of x/L = 0.61 shown in Fig. 4.6 have the same strtueture as the experimental flow-fields

presented in that study (Figs. 36, 37). The same conclusion can be drawn for the velocity vectors

at this cross-section (Fig. 4.7). The resolved component of turbulent intensity, which in our

simulations is about 3.5%, as can be deduced from (Fig. 4.12). agrees closely with the measured

total intensity at X/L =0.61. A further observations that can be made on the results of the

simulation is the rapid decay of the resolved turbulence w¢ith the increase in the width of the

wake. In the far wake only larger turbulence structures ecati been seen. This behavior seems

reasonable, since the small turbulence structures contain sigtiificantly less energy, hence they can

only last for shorter time compared to the larger eddies.

. . . .. . . .. . 9.. . . . . . . . ... .. . . . . , ;.

Figure 4.2: a) Geometry of DTMD 5415, b) Grid of the computational domain: 162x50x66.
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The mean kinetic energy was calculated from the predicted velocity field. This was

accomplished by calculating the mean velocity on several cross-sections in the flowfield via

summation of the instantaneous velocity over 20000 timesteps. Then, these mean velocity fields

were subtracted from the instantaneous velocity field on those cross-sections to calculate the root

mean square velocity fluctuations and hence the turbulent kinetic energy field.

Figure 4.8 shows that noticeable changes are observed in the streamwise velocity profiles

in both axial and vertical directions. The velocity has a peak below the free surface, which gets

weaker in the axial direction. However, the location of peak axial velocity defect moves deeper

into the wake indicating a plunging effect as the wake develops as seen in Figures 4.10(a)-

4.10(c). The turbulent kinetic energy of the rms velocity fluctuations in Figure 4.9 shows decay

and significant redistribution. Initially the turbulence is concentrated more near the free surface.

This area plunges deeper with increasing axial distance as also observed in Figures 4.11 (a)-

4.11 (c). This phenomena is investigated in more detail by Yavuz et al., 2004. Moreover, it can be

concluded from theses figures that the LES predictions clearly depict the two bilge vortices,

whereas the RANS predictions are known to be incapable to do so.

The effects of different numerical schemes and SGS models were also investigated in this

study. The resolved turbulence kinetic energy (TKE) for different schemes and different grid

sizes is shown in Fig. 4.12. The RANS solution obtained by the CFD-SHIP code from IOWA is

also shown in this picture for comparison. The resolved TKE from fine grid is higher than that of

the coarse grid as expected. Central differencing discretization with Smagorinsky model gives

better results than the other schemes in retrospect to the total TKE calculated from RANS. From

this figure it can also be seen that there is no significant difference in the results when the

QUICK scheme is used with or without SGS model. Moreover, the resolved TKE is lower than

that of central differencing with Smagorinsky model, This means that the grid is relatively coarse

and the QUICK scheme contains even higher numerical diffusion than the Smagorinsky model.

For more detailed information about the comparisons of numerical schemes and subgrid-scale

models the reader is referred to Shi et al. (2000b) and Shi (2001). One uncertainty in the

computations is the presence of a sinusoidal-like distribution of TKE in the near wake. It may be

because of the existing surface wave (not accounted directly here). When the wave descends

towards the bottom of the domain, it creates a constriction with flow passing through a small
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area. Thus both the velocity and TKE are higher at this region. A closer look at the wave profile

of RANS calculation showed that the peak region of k-profile did indeed correspond to the

descending wave region. It is interesting that our calculations also provide a similar trend

although no surface wave profile was applied in our LES. This indicates that some wave

information may be present implicitly in the inflow boundary data.

Figures 4.13 and 4.14 show the inlet flow-field as computed with RANS model and

produced after the application of the RFG procedure, respectively. In figures 4.15-4.19 the

velocity vectors on different vertical cross sectional planes are presented. Clearly, the large scale

turbulent eddies (vortices) are captured. As can be seen from Fig. 4.17 the axial development of

the flow shows the existence of unsteady vortices in the region around X/L = 1. These consist of

two stable large bilge-type vortices, and an additional smaller vortices farther away from the

axis. The axial development of the flow-field causes these vortices to weaken and drift in

spanwise direction toward the outer region of the wake, where they eventually disappear (Fig.

4.19). Although there are no bilge vortexes at the inlet boundary, these structures are developed

in the wake, which can be clearly seen in Figs. 4.15-4.19. This result gives more credit to our

approach of inlet boundary specifications, which inherits most of the flow characteristics after

the ship hull. The prediction of outward flow near free surface, and the streamwise evolution of

the vortices, without largely being dissipated, are also very encouraging indications of the

success of the present LES approach.

The vorticity contours on different vertical planes shown in Figs. 4.20 - 4.22 are

indicative of the degree of resolution of the calculations. These structures are hard to see in

Figures 4.15-4.19 due to relatively small magnitude of the velocity vectors. However, to

demonstrate the small weak turbulence structures, like those in Fig. 4.18(a), we enlarged the

velocity vectors in the areas containing turbulence structures corresponding to those in the

vorticity contour plot and depicted them in Fig. 4.18(b). A corresponding area in the vorticity

contour plot is also included in Fig. 4.22 for reference with the cross section taken at x/L = 1.2.

Without interpolation, the weak vortices can not be seen in the velocity vector plot due to scale

difference, whereas the interpolated contour plots do show small structures.

Figures 4.21 and 4.22 show again that much of the vorticity is concentrated near the free

surface, and there are two large counter rotating vortexes on two sides of the wake in addition to

several smaller ones which can play an important role in bubble dynamics.
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Figure 4.3: Typical instantaneous streamwise, vorticity (dOX)contours on different y-z planes in the

wake of the ship model 5512
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Figure 4.4: Typical instantaneous vorticity contours(o),ý) 011 a x-z plane parallel to free surface at

y/L = 0.01 in the wake of the ship Miodel 5512
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Figure 4.14: RANS+RFG solution at x/L = 0.0

65



-0.01 - I, /-

-0.02 z" -'--x
- . - , - ,- - , ,

~. L ' I
-0.03.

> -0 .0 4 ' ** ' I - /*" - "

-0.•05

,t --0.06.. .. /ti. J \,,tt , . . . . . . .

-0 .0 7 - I . . . . l , - - ' \

-0.08 I I I I i , I I
-0.05 0 0.05

z
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Figure 4.21: Typical instantaneous vorticity contours (coj) on y-z plane at x/L = 0.6 in the wake of
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4.4 Ship Wake Simulations on a Circular Track

As a first step for this study, a standard Smagorinsky model that forms the basis for the

advanced models has been applied to investigate the influence of the Coriolis and centrifugal

forces on turbulence generation on the ship wake flow field.

The focus of this study is the wake behind the Navy DDG51 surface ship, which is

approximately 154 m long and 20 m wide, cruising on a circular track (see Figure 4.23). The

average speed of the ship is assumed to be around 20 knots. The ship model data used for this

simulation was taken from the data of DTMB 5415, a towing tank model representing a modern

naval combatant, DDG51 (Stern et al., 2000). As stated in Shi (2001) and Yavuz et al. (2002),

the ship hull is excluded from the LES calculations due to computational expenses and the

computations were started from a plane aft of the ship. This is accomplished using the RFG

technique, originally developed at West Virginia University, which calls for a time averaged

flow field at the inlet data plane. Reynolds Averaged Navier Stokes (RANS) calculations

(Hyman, 2001) (steady state RANS calculations around the ship hull) are used to provide the

RFG procedure with the information needed on the inflow boundary (initial data plane) located

0.5L after the body in the wake. In other words, the pseudo random flow field generated by the

RFG technique is added to the mean flow of the RANS simulations in order to provide the

boundary condition at the inlet plane. The further development of the wake flow is calculated via

LES (non steady LES of the wake). LES of high Reynolds number flows with complicated

geometries are enabled by this combined approach (Smimov et al., 2000). Therefore, the effect

of the ship body on the flow field is embedded in the mean flow prescribed at the inflow plane.

However, this technique, also known as the Initial Data Plane (IDP) approach (Hyman, 1998,

Paterson et al., 1996) can introduce considerable errors (Hyman, 1998), as a matter of fact that

the body generating the wake is not included in the non-steady LES simulations. It should be

noted that it is possible to predict turbulence via LES technique by starting from a mean flow

obtained from RANS. However, it takes a very long time for a turbulent flow to develop spatially

and temporally without any initial perturbation. Also for some engineering applications, it may

be too expensive in terms of computer resources and programming effort.

70



4.4.1 Conditions and Grids

As stated above, the ship model DTMB 5415 is a 5.72m long model of the Navy DDG51

surface ship (Stem et al., 2000). A computational domain of 1.75x0.15xl.0 (given in non

dimensional units in ship lengths and it starts from x/L=1.50, where x/L=l is the end of the ship

model) and a grid of 66x33x66 (Coarse Grid) (Case-i) in x (axial), y (vertical), z (transverse)

directions has been used to represent the near wake region. This grid configuration has been

selected to quickly assess the effect of the Coriolis and centrifugal forces on the turbulence

characteristics. It should be noted that a thorough study was not conducted as to whether the side

boundary is far enough away from the wake. In the IDP plane, the RFG method is used in

conjunction with the RANS calculations (Hyman, 2001) and the ship's stern is at (0.5, 0, -3.0) in

x-, y-, z- directions respectively. The core region of the numerical grid and the geometry of the

ship model are illustrated in Figure 4.24 (a) &(c). The ship turns with a dimensionless angular

velocity of 1/3 (Figure 4.24 (b)) with a radius of curvature corresponding to three dimensionless

ship lengths, which will result in a dimensionless ship velocity of 1. Only a 300 turn was

investigated. Two Reynolds numbers have been used in the simulations. One is based on the real

ship length, i.e. 1.5x109 stated as Case-1 and the other based on the model ship length, i.e.

1.0xl07 stated as Case-2. Here, Reynolds number similarity is assumed, which is attained by

changing the laminar viscosity of the fluid in the simulations.

The coordinate system used is with respect to an observer on the ship. The Smagorinsky

constant used in the eddy viscosity relation is calculated to be 0.042 from scaling with the non-

turning simulations (Shi, 2001). Moreover, a simulation with relatively fine grid in the axial

direction has been conducted to investigate the grid sensitivity of the predictions. This grid

consists of 130x33x66 nodes (Medium Grid) for Case-i in x, y, and z directions, respectively.

Non-uniform grids were used in this study in both x and z directions with the expansion ratio not

exceeding 1.03. The length scale and time scale used in RFG are calculated from "r=k/6 and

1=0.09k'5/F , non dimensionalized by free stream velocity and ship length. A comparison of the

results from using Smagorinsky constants, 0.065 (selected to be the constant for the non-turning

ship simulation) and 0.042 has been presented for the relatively fine simulations. Then, the grid

of 130x50x1 10 (Fine Grid) and 190x50x1 10 (Finest Grid) for Case-2 have been used to analyze

the physics of the wake behind a turning ship. Finally, to investigate the effect of the free

surface, another study has been conducted with fine grids for the model ship simulation. The

71



time step is 0.001 for all grid resolutions. On an Intel Pentium 4 3GHz machine, CPU-time and

memory requirements were approximately 226 hours for 0tie flow through time (time required

for the flow to pass in the calculation domain, x=1.75L) and 491 MB respectively, for the fine

grid simulations with the standard Smagorinsky model.

On the other hand, Shi (2001) and Shi et al. (2006) applied LES on the wake flow of the

ship model DTMB 5512 (Longo et al., 1993, Gui et al., 1999, Stem and Wilson, 2000). A

3.048m long unpropelled model of a modem U.S. NaVy fleet ship, Arleigh-Burke class

destroyer, DDG51, with a Reynolds number of 4.65x106 tfuising on a straight track has been

investigated. The computational domain was 1.5x0.3x0.6 (given in non dimensional units in ship

length) in x- , y-, z-directions, respectively, with a grid size of 162x50x66 and 322x50x66. Non-

uniform grid spacing with stretching smaller than 1.03 was uged in both x and y directions.

Figure 4.23. Arleigh-Burke class destroyer (DDG5 1)

4.4.2 Boundary Conditions

For all simulations, the velocity components at inflow boundary plane are set equal to

those calculated via RANS simulations by Hyman (2001) (see Figure 4.24. (b)) plus the

fluctuating velocity component obtained from the RFG technique. The outflow boundary is

assumed to be a free gradient boundary. At the top and bottom boundary surfaces a symmetry

boundary condition is applied. At the free surface (i.e. the top boundary), a slip is allowed in x

and z directions but the velocity component normal to the fkee surface is set to zero (as such the

free surface is approximated as a moving flat plane; where the free surface is completely flat).

The boundaries in the-transverse direction are treated as stteam surfaces, where the tangential

velocities are specified using the turning ship velocity as a base and by accounting for the turning

of the ship via a rigid body motion, such as,
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fi-T =Q, *(R )Z (4.1)
L

Q= the angular velocity of the system rotation due to the turning ship

R* = the radius of the curvature, R* = 3.00L

z*= the distance measured from the centerline in the positive z direction
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Figure 4.24. Turning ship wake: a) The geometry b) velocity profile specified at the IDP (top

view) c) The coordinate space system and numerical grid (Only the core region is shown, distances are

non-dimensionalized with ship length, L)
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4.4.3 Results and Discussions

Figure 4.25 shows the instantaneous vertical velocity contours with Coriolis force (Case-

1) at different y-z planes in the turning ship wake. This figure has been included to help the

reader to visualize the cross sectional planes taken at different angles (50, 100, 150, 200, 250, 300).

Figure 4.26 shows the radial velocity profiles at two different y-z planes (5', 100) for fine grid in

order to check the boundary conditions specified in the transverse direction. The figure confirms

that the LES code treats the boundaries in the transverse direction as stream surfaces. The

unsteady velocity fluctuations are compared for cases with and without Coriolis force (Case-1) in

Figures 4.27 to 4.28. The figures show the streamwise velocity components versus

nondimensional time at an angle of 10 degrees measured from the inlet plane z. From

approximate calculations, the resolved frequency of the velocity fluctuations is obtained to be

around 4.7 Hz in all three directions with the Coriolis force and 3.5 Hz without the Coriolis

force. This indicates that the Coriolis force tends to increase turbulence activity. In order to

compare the results of the turning and non turning ship wake cases, a scaling has been done such

that, (CsA2)1nontum = (CsA 2 )ltur . From Shi's (2001) non turning ship wake calculations, C, is

set to be 0.065. Using the above scaling, C, of 0.042 has been calculated and used for the

medium grid simulations.

For fine and finest grid simulations, similar logic has been carried out in order to obtain

Cs values in the Smagorinsky model. For the medium grid, the resolved frequency is around 9Hz

for Cs=0.042 and 7 Hz for Cs=0.065. The frequencies are approximately calculated from the

temporal history curves of all three directions, such that one over the difference of the two crest

points divided by the time difference in those crest points gives the approximate frequency. If the

Smagorinsky constant is smaller, the frequency obtained is higher, which implies that more

energetic turbulent fluctuations are captured. This is an indication that higher frequencies and

smaller turbulence scales are captured with the relatively fine grid for both values of the

Smagorinsky constant. Hence, physical intuition and simulations give similar conclusions.

Figures 4.30-4.32 present the velocity vectors at vertical cross-sections at an angle of 5'

with the z-axis Note that R is taken to be minus to be consistent with the minus z- direction, that

is calculated from R = (x - 0.5)2 + . The coarse grid case in Figure 4.30 with the Coriolis

force shows better-defined turbulent structures or eddies than the case without the Coriolis force
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in Figure 4.31, which seems to be more diffusive. Here, one could argue that the Coriolis force

helps to maintain the turbulent structures of the flow. Moreover, the medium grid predictions

with the Coriolis force presented in Figure 4.32 indicate even a lesser diffusion (or smearing) for

both values of Smagorinsky constant. Here, it can be seen that the vortical structures are not

penetrating as deeply as in the coarse grid case. Experimetital observations of Matsubara and

Alfredsson (1998) have shown that the Coriolis force may give rise to instabilities in the form of

longitudinal vortices which supports the above assertions.
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Figure 4.25. Typical instantaneous vertical velocity contours with Coriolis force on different y-z

plane in the turning ship wake (comte grid)
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Figure 4.26. Radial velocity profiles on different y-z plaees in the turning ship wake (fine grid)
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Figure 4.28. Temporal history of streamwise velocity components at I0°with the z axis, and

x=1.02, y=-0.002 (medium grid), Cs=0.o42
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Figure 4.29. Temporal history of streamwise velocity components at 100 with the z axis, and

x=1.02, y--0.002 (medium grid), Cs=0.065
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Figure 4.30. The velocity vectors on a vertical plane at an angle of 50 with the z-axis with

Coriolis force (coarse grid)
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Figure 4.3 1. The velocity vectors on a vertical plane at an angle of 5' with the z-axis without
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Figure 4.32. The velocity vectors on a vertical plane at an angle of 50 with the z-axis (medium

grid) a) Cs=0.O42 b) CsO0.065
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The velocity vectors on vertical cross-sections at an angle of 250 with the z-axis are

shown in Figures 4.33-4.34. Although, similar structures in both near the inlet data plane and

near the outlet are observed, the intensity of the velocity fluctuations diminish as the outflow

plane is approached due to grid expansion. Moreover, it is seen that away from the wake

centerline, the strength of the flow structures has already died in both cases. In the far

downstream portion of the calculation domain, larger turbulent structures are seen to be merging

with the smaller structures. Still, a significant level of vorticity can be captured in both cases.

Overall, it is seen that one large vortex, presumably the one originating from the ship hull

persists without significant dissipation.

A comparison of the resolved turbulence kinetic energy is shown in Figure 4.36. In

calculating the kinetic energy values, the samples were taken to be 10000 time steps from 2 flow

through times data (=35000 time steps). It is observed that due to the coarse grid towards the end

of the calculation domain, vorticity (hence turbulence) decays rapidly, however the medium grid

predictions have a very gradual decay of turbulent kinetic energy. For the coarse grid

simulations, turbulence decays more rapidly due to the numerical dissipation. The kinetic energy

values obtained from the case with Coriolis force is slightly higher than that of the case without

Coriolis force, as expected. As seen from the figure, the adjustment of the Smagorinsky constant

is necessary, as the kinetic energy values obtained with Cs=0.042 are almost on the same level as

the ones obtained from the non-turning ship simulations(Shi, 2001). These observations allude to

the fact that the Smagorinsky constant should be adjusted for streamline curvature effects. The

turbulence intensity specified at the inlet was observed to decay rapidly, which was mainly due

to the nature of the coarse grid used. For this reason a medium grid simulation has been

performed. This improved the turbulent kinetic energy prediction and more detailed turbulence

structures were captured.

Similar conclusions could also be drawn from the vorticity contours. Calculations showed

that the highest and lowest vorticity magnitudes are more pronounced in the case with the

Coriolis force, whereas the case without the Coriolis force shows a more diffused or smeared

picture. The vorticity results again indicate that the Coriolis force keeps the vorticity

concentrated in the flow-field.
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Figure 4.33. The velocity vectors on a vertical plane at an angle of 25' with the z-axis with

Coriolis force (coarse grid)
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Figure 4.34. The velocity vectors on a vertical plane at an angle of 25' with the z-axis without

Coriolis force (coarse grid)
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Figure 4.35. The velocity vectors on a vertical plane at an angle of 25' with the z-axis (medium

grid) a) Cs=0.042 b) Cs=0.065
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Figure 4.36. The comparison of the resolved turbulence kinetic energy for ship cruising on a
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The goal of this preliminary study was to assess the effects of the Coriolis and centrifugal

forces on the vortical structures or turbulence characteristics of the flow in the wake of a turning

ship using the large eddy simulation technique. The eddies resolved by LBS have been observed

to be more energetic and less diffusive when the Coriolis force was included. It seems as if this

force supplies energy to the large turbulent structures and thus enhances anisotropy. The vorticity

contours show a non-symmetric wake development with significant stretching in the radial

direction away from the center of rotation. This is also seen from the velocity vectors comparison

of non-turning and turning ship studies in Figures 4.37 & 4.38. As these figures show the non-
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turning ship case has a symmetric wake with respect to the wake centerline, whereas in the

turning ship case, there is a significant flow present in the radial direction that is believed to be

caused in part by the centrifugal force, arising from turning of the ship. Here, the simulation of

the model ship with grids of 130x50xl10 and 190x50x110 has been studied to compare the

results with the non-turning ship wake.

A study of the effect of Reynolds number for Case-2 and Case-I using 190x50x1 10 grids

is shown in Figure 4.39. This comparison can be done since all the values are

nondimensionalized with respect to their ship velocities, either real ship or the ship model. The

velocity vectors are at the same location, x/L=0.65 and standard Smagorinsky model has been

used. When the Reynolds number is low, the turbulence structures are observed to be more

visible, well defined and more diffusive. However for high Reynolds number flows, there are

certain unorganized structures seen in the flow field and the flow structures seem to be less

diffused. As the wake develops, the flow structures disappear rapidly for Case-i; however, for

Case-2, the flow structures are observed to be still well defined. The unsteady velocity

fluctuations are also compared for Case-1 and Case-2 in Figures 5.40. The resolved frequency of

the velocity fluctuations is estimated to be around 40 Hz in all three directions for Case-i and 30

Hz for Case-2. Here, 30 Hz and 40 Hz seem to correspond to large bilge vortex passage. If the

Re is higher, the frequency obtained is higher, which is an indication that smaller turbulent

structures are captured with high Reynolds number. The period (hence frequency) can also be

approximated from the roughly eddy turnover, which is T=largest eddy size/ship velocity where

at 10', the largest eddy size is approximately 0.04 from Figure 4.45 (b) and the ship velocity is 1,

therefore T=0.04/1=0.04, f=l/T=25Hz, which is close to 30Hz.

Although the classical Smagorinsky SGS model is not that suitable for complex flows as

it uses a constant eddy viscosity coefficient for the entire domain, this study has shown that it can

.be used as a SGS to predict the flow dynamics of the wake behind a turning ship reasonably

well.

4.4.4 Properties of Turbulent Ship Wakes

The mean inflow boundary data was obtained by slicing the RANS solution at x/L=1.5

plane for turning ship wake and x/L=1.05 for the non turning ship wake and then interpolated to

the inlet plane of the computational domain. The mean axial velocities for both non turning and
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turning ship wake after the interpolation are presented in Figure 4.41 (a) and (b). To see the

effect of the LES wake calculation only, the axial velocity contours are adjusted due to rotation

and the mean axial velocity adjusted for rotation at the IDP (x/L=1.5) for turning ship wake is

given in Figure 4.41 (c). By using RFG and the mean flows on these planes, the turbulent inflow

boundary for both ship simulations was reconstructed. Figure 4.42 presents the pseudo random

flow field generated by the RFG on the IDP for turning ship wake. From the axial velocity

contours in Figure 4.43(a), two stable large bilge type vortices are observed for the non-turning

ship wake simulation using the standard Smagorinsky model (Re=4.65x10 6) at x/L=0.65. Two

small side vortex pairs are observed away from the center of the wake. These vortex pairs drift in

the spanwise direction, get weaker and eventually disappear. From the axial velocity contours

adjusted for rotation at x'/L=0.65 for the turning ship wake in Figure 4.43(b), one large bilge

vortex, that moves downwards, is observed and is probably the result of merger of the two

vortices (bilge vortices of opposite rotation) under the action of Coriolis and centrifugal forces

for the turning ship wake simulation. There is a smaller circulation region (a side vortex) on the

outer rim of the wake. The streamwise flow field causes the side vortex to weaken and the wake

decays in the outer region of the near wake similar to non-turning ship. The Coriolis force seems

to generate more energetic and less diffusive eddies, hence it seems to increase kinetic energy

content of the wake (Yavuz et al., 2002).
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Figure 4.40. Temporal history of streamwise velocity components at 100 (x=1.02, y=-0.001 and z=-3.18)
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Figure 4.44 shows a comparison of the predicted velocity contours with the macro wake

measurements at x/L=1.20 by Hoekstra & Ligtelijn (1991) for the ship model No. 5452

(Re-lxlO7) with the non-turning ship wake at the same location. In both studies, minimum axial

velocity occurs near the free surface of the center of the wake, as seen in Figure 4.44. Both axial

velocity contours resemble an upside down rimmed hat form. Two side lobes close to the free

surface and a central lobe are observed. As stated by Hoekstra & Ligtelijn (1991), these contour

forms are very much alike for all ship hulls. Figure 4.44 indicates that from the straight ship

wake simulation, similar physics are obtained when compared with the macro wake

measurements at the same location. Moreover, the extent of axial turbulence intensities is also in

reasonably good agreement with measurements, as shown in Table 4.1. Figure 4.45 shows the

axial development of the wake of a turning ship. The bulk movement of the large bilge vortex

can be seen clearly through the wake as it moves under the action of the Coriolis and centrifugal

forces. The comparison of the energy spectra of the velocity fluctuations for the two wakes is

shown in Figure 4.46. It is seen that the turning ship wake has more energetic fluctuating eddies

(the values are almost 10 times higher) as compared to the non-turning ship at the same location.

This finding is expected as the initial value of the kinetic energy for the non-turning ship wake is

almost 8 times smaller than the turning ship wake. For the turning ship wake, the smallest eddy

turnover has been calculated to see whether it is correlated or not with the time step used in the

simulation; At=lxl 0 4. The smallest eddy turnover (numerical or discretization turbulence) can

be defined as, the eddy size over the ship velocity, where the resolved eddy size is

2JAx1AX2AX3  and the ship velocity is 1. At 10', Axl=4.523x10 3 , Ax2=2.779x10 3 ,

Ax3=4.07x10-3, which yields an eddy turnover time of 4.52x10-4, and a frequency, f, equal to

2520 Hz. Since this frequency is much larger than the estimated frequency of 30 Hz, there seems

to be no correlation between them. It should also be noted that the shape of spectra for the

turning ship case is quite different from the straight track case (Fig. 4.46). In addition to these,

the wake spreading or wake width for the non-turning ship, which is obtained to be roughly

w-x V4 is consistent with Buller & Tunaley (1989)'s measurements. Milgram et al. (1993) and

Hoekstra & Ligtelijn (1991) found w-x1/5. The spreading rate of the turning ship wake can't be

easily observed like in the non-turning ship. This is also seen from the predicted vertical vorticity

contours in Figure 4.25. It may be due to the grid coarsening towards the end of the calculation
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domain. Moreover, the "inboard" side of wake has a much sharper edge while the "outboard"

side is more diffusive. This might be due to instability in the "outboard" side.

for any ship hull - maximum value of root mean square fluctuations

location experimental numerical

(m/s) (values obtained *Us) (m/s)

x/L=0.25 0.106± 0.02 0.083

x/L=0.6 0.067± 0.01 0.069

x/L=1.0 0.047± 0.01 0.057

Table 4.1. Comparison of the maximum values of the roOt mean square fluctuations for some

locations in units of (m/s) for non-thiing ship
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5 BUBBLE DYNAMICS

Prediction of bubble distribution in ship wakes is an important area of naval research

primarily related to ship detectability from air-born platforms. Ship-wakes can be located by

optical means using detection of light scattered from air bubbles entrained in the wake. On the

other hand, experimental data on bubble distributions are usually obtained by acoustical

methods. Thus, a complete analysis of this problem requires complex multi-physics modeling

that would account for different physical processes. The perspective computational tools will

have to be based on multi-phase fluid-dynamics solvers, capable of accurate turbulence

predictions, and with potential for building composite models.

Considering relatively small volume fractions of bubble phase in the ship wakes, the

method of Lagrangian particle dynamics (LPD) is most appropriate for computing bubble

distributions. It has advantages over the Eulerian two-fluid methods in the cases of dilute

suspensions or when large concentration variability of the discrete phase is present [Elghobashi;

Crowe]. This situation is true for bubbly wake flows, such as those in ship-wakes, where bubbles

may experience preferential concentration and clustering effects in the near wake region but are

rather dilute in the far wake. The LPD method is also conceptually simple and methodologically

robust providing a numerically stable statistical model for evaluating dispersed phase

concentration and particle/bubble distribution functions. The algorithm for particle tracking and

population dynamics developed earlier by the authors demonstrated the ability to efficiently

simulate large populations of particles including coalescence effects with even modest computer

resources [Shi et al. 2000a&b; Smirnov and Celik, 2000; Smirnov et al., 20001.

Simulations of bubbles in turbulent shear layers require accurate representation of the

fluctuating flow-field that governs bubble dynamics. When conventional RANS (Reynolds

Averaged Navier-Stokes) models are used this accuracy is often lost or comes at a cost of

empirical physical sub-models for turbulence. On the other hand, direct numerical simulations

(DNS) or LES require no, or a relatively simple subgrid-scale (SGS) model. LES has the

advantage over DNS of being able to handle flows with higher Reynolds numbers and still

accurately reproduce large-scale dynamics at a much reduced cost.
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The majority of simulations of turbulent bubbly shear layers using Eulerian- Lagrangian

approach is done using RANS methods for high Reynolds number flows [Joia, 1997; Murai,

2000] or DNS-type simulations for relatively low Reynolds number flows [Elghobashi and

Lasheras, 1996; Ruetsch and Meiburg, 1994; Okawa et al., 2001; Murai et al., 2001]. Many

commercial CFD codes now have LES algorithms with Lagrangian tracking techniques for

turbulent flows. However, for the purpose of a complex multi-physics analysis of turbulent

wakes, including the multi-phase and acoustical effects, the authors considered it important to

use a research-grade LES code. This will enable us to build composite solvers including fluid,

acoustic and bubble interactions. Thus, the LES-based approach pursued in this study provides

the basis for multi-physics LES of large-Reynolds number flows.

One of perceived disadvantages of the Lagrangian approach is the requirement to

simulate a relatively large number of particle trajectories to obtain the needed statistics. This

study elaborates that this perception is exaggerated as long as the flow can be categorized as

nominally dilute. Particularly, we made simple estimates (Sec. 5.4.2) to determine under what

conditions the assumption of dilute two phase flow would be valid for calculations of turbulent

bubbly flow, such as those in ship-wakes.

5.1 Formulation

The LPD algorithm for particle tracking and population dynamics developed by the

authors demonstrated the ability to efficiently simulate large populations of particles including

coalescence effects with even modest computer resources [Shi et al. 2000; Smimov and Celik,

2000; Smirnov et al., 2000; Shi, 2000]. In this study the LPD algorithm was combined with the

Large-Eddy simulation approach [Smimov et al., 2001; Piomelli, 1999] to compute the

distribution of bubbly phase in the near-wake flow of a ship-model. The LES technique

[Piomelli, 1999] enhanced with the RFG procedure [Smirnov et al., 2001; Smimov et al., 2000;

Shi, et al., 2000] was implemented into the LES method to enable the appropriate representation

of initial/inlet turbulence conditions and, as a subgrid scale for particle dynamics solver. It

should be noted that the RFG approach is essentially a simplified spectral method, and as such it

has a potential to be used as a part of an acoustic solver in the appropriate sub-model. This may

be important for validation of the simulation results on the data produced in acoustical

experiments [Trevorrow et al., 1994].
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The combined LES/RFG method was validated on the cases of turbulent mixing layer,

and used later to simulate the wake of a Navy ship model 54154 [Smirnov et al., 2001]. The

fluctuating velocities at the inflow boundary provided by RFG were generated from the data

obtained in prior RANS calculations based on k - c turbulence model [Larreteguy, 1999].

To compute bubble motion the following equations were adapted from Sridhar and Katz

[Sridhar and Katz, 1995]

dUt =Ao +Ab +Ad +Al (5.1)dt

where the A vectors on the right-hand side represent accelerations due to added mass

(Aa), buoyancy (Ab), drag (Ad) and lift (A,) given by the following expressions

A.C a=C -- +(Uf .V)Uf

Ab = -Cb g

Ad= 3 Cd Urel I Urel4Urr

o3 =0.5 * (V x Uf) (5.2)

Relations (5.2) were obtained for spherical bubbles and by considering the limit of a

small air-to-water density ratio pa/pw ;:0. The coefficients of added mass (Ca) and buoyancy,

(Cb) were found to be Ca = 3.0 and Cb = 2.0. The coefficients of drag (Cd) and lift (C,) are

themselves empirical functions of U re, and bubble diameter, which were obtained from

experimental measurements of bubbles dynamics in turbulent vortexes. The Bassett term

involving the history integral was neglected in this case, following the conclusions of Sridhar

and Katz [Sridhar and Katz, 1995] on small contribution of this term compared to the buoyancy

term for a typical wake flow turbulence. The typical bubble sizes used in the experiments were

4 http://Www50. dt. navy. mil/5415
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500 - 800,u m, and the Reynolds numbers, based on relative velocity between 20 and 80, and

vorticity between 2 and 20s-'.

The set of equations (5.1), (5.2) was selected, because they were obtained from the

experimental data on bubble dynamics in vortex flows, similar to those of turbulent bubbly wake

flows. Since the parameters of a single bubble dynamics in simple vortexes were directly

measured, these data represent the features of pure bubble dynamics not affected by the random

effects of turbulence, as may be the case with some experimental data collected from stochastic

bubble ensembles. It should be noted that there are other alternatives to the approach selected

here. For example, the classical analytical formulation of Auton, [Auton, 1987; Auton et al.,

1988] and it's extension to the viscous flow [Auton et al., 1988] is likewise "non-polluted" by

stochastic effects of turbulence, and this form of the lift force has been successfully used to

predict a variety of bubbly flows. Generally, the question of which expression is optimal for a

given bubbly flow is still an open research issue. The authors used the results of Sridhar and

Katz, because they appeared to be most appropriate for representing bubble dynamics in a vortex

and a suitable choice for LES. However, it is possible that similar results could be obtained using

another set of equations.

Equation (5.1) was discretized using a second-order Runge-Kutta time stepping scheme.

In the mixing-layer case (Sec.5.3) bubble tracking throughout the computational domain was

simplified by using a uniform Cartesian grid, so that the index of the cell containing the bubble

could easily be obtained using a simple division by modulus operation. In the case of a ship wake

(Sec.5.4) this restriction was lifted and a more general grid-independent tracking algorithm

(Sec.5.2) was used. Fluid velocities were interpolated to the location of a bubble using tri-linear

interpolation formula.

In a joint LES/LPD/RFG approach the flow solver and the particle solver can use

different time-stepping schemes with independent selection of time-steps. This was necessary

due to the difference in turbulence time-scales and bubbles relaxation times. Usually sub-cycling

of bubble iterations inside the flow iterations is required to reach a stable solution.

To estimate the dissolution of bubbles of different diameters at different depths we used

the bubble dissolution equation as formulated in [Rightley and Lasheras, 2000] and corrected in

[Hyman 1994; Carrica et al., 1998].
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dm 2/3 IU11/3 F4/3

-=6(C. -Co)D u r (5.3)dt

where r is the bubble radius, Jul is the relative air-bubble velocity and D, is the

diffusivity of air in water. Constants C ,Co represent the concentrations of dissolved gas at a

distant point and at the bubble surface respectively and are computed as in [Carrica et al., 1998].

C. = HFo,, (5.4)

CO = H(PJim + p g h + 2cr/r) (5.5)

where H is Henry's constant, Paim is the atmospheric pressure, g is the gravity

acceleration constant, and o is a surface tension coefficient.

The current model does not include bubble breakup. This can be justified for the mixing

layer and ship-wake cases, considered below, on the grounds of rather small turbulence energies

and bubble sizes. Indeed, if we use the conditional breakup probability for a bubble hit by an

eddy [Luo and Svendsen 1996 (Eqn. 26)]:

P x 12cf (r

PP= exp - 2/3pd-5/3 11/3

We can get an estimate for largest bubbles of sizes around lmm 5. The breakup

probability in this case is around 10-', and falls rapidly for smaller bubble diameters, d, as

d-5 3 , which justifies neglecting their breakup effects.

5.2 Implementation

There were two tasks to be solved for an efficient implementation of an LPD procedure:

(1) particle tracking and (2) particle population dynamics. The first task is related to the problem

of identifying the grid-cell where the particle is located, and interpolating the relevant grid-based

variables to the particle location. The second task is related to the problem of creating and

destroying particles as the need arises due to the processes of particle injection, disappearance

through the free surface and crossing the boundaries of the computational domain. Since both

5We used: cf = 0.26, a = 0.0741 kg/s 2 , 8 = 2.0, pc = 1000 kg/m3 , e = 1.0 m2/s3 , 1=
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particle tracking and population control are frequently occurring operations, it would be highly

desirable to solve each task in a manner that would avoid expensive loops through the particles
or grid-node arrays.

Particle tracking

When the particle tracking is done on structured grids, the location of the grid-cell

containing the particle is a straightforward task reduced to a division-by-modulus, multiplication

and addition operations. When non-uniform or unstructured grids are used the procedure is not as

simple. In this case there should be a way to identify if the current location of the particle is

inside the same cell it was inhabiting in the previous iteration or whether the particle has moved

into a neighboring cell.

The present LPD procedure accomplished this task by solving the inclusion problem in a

polyhedron. This is a standard algorithm in the area of computational geometry [O'Rourke,

1998], where the given point is tested against each face of a polyhedron and it is decided if the

point is on the inside or the outside of the face relative to the center of the polyhedron. In the end

the point is either found to be inside the polyhedron or the search is repeated in the neighboring

polyhedron lying across the first face, which failed the test. Identification of the neighboring

cells is a simple matter on structured grids, whereas on unstructured ones cell-neighbor

connectivity information should be used .

Population Dynamics.

For an efficient implementation of particle population control algorithm, it would be

desirable to avoid both looping trough the particles and dynamic memory

allocations/deallocations in cases when new particles are created or destroyed. It can be achieved

by using linked lists. In the present scheme an array of the size equal to the maximum number of

particles is initially allocated. Then the pointer system is setup to link all the particles together in

a ring fashion, separating them into active and dead sublists (Fig. 5. 1 (a)). Whenever a particle is

6 In parallel implementation the neighbor connectivity should cross domain boundaries
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created or destroyed it takes only six pointer assignment operations to move it between the active

and dead sublists. Figure 5.1 (b) shows an example of destruction of particle B by the appropriate

reassignment of pointers between the old neighbor-particles A,C and the new ones: D,E.

Even though the limitation on the maximum number of particles in the domain may seem

restrictive, it is a compromise, allowing to avoid dynamic allocation/ deallocation of memory

space for each newly created or destroyed particle. Since the latter operations can be rather

frequent this procedure seems reasonable from efficiency standpoint.

SA B C
-TIVE--

ACTIVE
PARTICLE RING

DEAD
D E

(a) Particle ring (b) Particle destruction

Figure 5.1 Dynamic memory allocation of particle storage

5.3 Validation on a Turbulent Mixing Layer

The validation of the LES/LPD approach was done on experimental data of a mixing

layer [Rightley and Lasheras, 2000] (Fig. 5.2). A detailed description of the validation study

including the results for the flow-field distribution is presented in [Smirnov et al., 2001]. Here

we present additional data on the influence of the effect that the RFG sub-grid model had on the

results.

In the experiments the mixing layer was generated by two separate parallel flows with

different incoming velocities. A thin flat plate of 0.15m length, 0.003m height, and 0.2m width

(the whole span-wise extent), was mounted in the middle of the inlet plane. The average velocity

of the lower half flow was 0.28m/s, while the upper half value was 0.07m/s. Bubbles of 40/.im

in diameter were carried in from the lower half of the channel. For further details of the
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experimental installation and computational setup we refer to the relevant sources [Rightley and

Lasheras, 2000,15; Smirnov et al., 2001].

7cm/s

28cm/s

Figure 5.2 Mixing layer experimental setup

In bubble simulations two runs were conducted: with and without the RFG subgrid-scale

model. In both cases a column of 100 bubbles was injected at the inlet of the domain with time

interval of 27 milliseconds for the duration of 12.7 seconds, resulting in 47,000 bubbles that

entered the domain during the course of the run. Figure 5.3 shows a typical bubble distribution

computed by LES/LPD algorithm compared with those observed in experiments. The bubble

cloud can be seen to be entrained by the fluid entering the mixing region from the high speed

side into the cores of the coherent vortex structures present in the mixing region. The pictures

represent an instantaneous distribution, which is different for any given time, but shows common

statistics and similar dynamical features.

Spatial histograms of bubble distributions were obtained by counting all bubbles passing

the cells of the 3D-histogram and accumulating the statistics. Normalizing the histogram data by

the total number of bubbles injected, gave bubble probability density functions and

concentrations. The statistical error, a-, in the number of bubble counts, n, for each slot of the

histogram can be estimated from binomial distribution as a'= [n(1 -n/N)]" 2 , where N is the

maximum number of bubbles injected during the simulation. This will add to the uncertainty in

the layer thickness calculations for larger X, and smaller bubble concentrations.

Figure 5.4 shows the surface of the histogram and the contour plot of the constant

concentration levels. Figure 5.5 shows the growth of the mixing layer thickness in the stream-

wise direction (X) with and without the RFG model. Over-prediction of layer thickness at small

X is due to the finite resolution of the histogram. The inclusion of the RFG model improves the

predictions at greater X.
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Figure 5.5 also shows predicted and measured development of the mixing layer thickness.

The overall agreement is good except at large axial distances where a smaller rate of growth of

the mixing layer in the stream-wise direction is observed when no subgrid scale model was

applied. Although the inclusion of the RFG model [Smimov et al., 2001] improved the

predictions of the boundary layer growth at higher axial asymptotics, it also increased the

uncertainty in the boundary layer thickness because of the higher dispersion in bubble

distribution.

Figure 5.6 provides comparison of predicted bubble concentrations against experimental

data. The agreement is reasonably good especially at the beginning of the boundary layer. Some

irregularity of computed data further downstream is most probably due to statistical uncertainty

of the sample as bubble concentration becomes more dilute.

It should be noted that, being statistical in nature, the LPD method enables the refinement

of the histogram and improvement of the accuracy by subsequent accumulation of bubble

statistics. Since the statistical error is proportional to 1/n"2 , where n is the number of bubbles in

a histogram box, it would require four times as many bubbles for a two-dimensional histogram to

double the resolution along each axis, or to reduce the statistical error by half with the same

resolution. The choice of histogram size is a trade-off between the spatial resolution and

statistical error.

It should be noted that the statistical nature of the Lagrangian approach can be of an

especial benefit when using distributed memory computer platforms to compute multiphase

flows. By simply running the same simulation on several processing nodes with a different initial

conditions one can increase the sample size and improve the statistics. A particularly attractive

feature of this approach is that no domain decomposition will be necessary for these

computations and therefore a strictly linear scalability can be achieved. This is the case of what

is sometimes referred to as an embarrassingly parallel computation.

5.4 Ship-wake Simulations

5.4.1 LES Results

Ship-wake simulations were setup to correspond to the un-propelled Navy 5415 model

[Smirnov et al., 2001]. The Reynolds number based on the ship width is on the order of 2. 10'.
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Computational grid with dimensions 164 x 98 x 92 was used to represent the near-wake region

(Fig. 5.7) of one ship-length, L, in the axial direction, 0.3 L in depth and 0.6 L in the span-wise

direction. The simulations were performed on a 1GB 1 GHz DEC Alpha computer, with an

average computing time of one month for a single flow-through time.

Only the wake flow was simulated, with the inlet plane conditions provided by prior

RANS results carried out at the university of Iowa [Ramaprian, 1981]. A distribution of turbulent

kinetic energy in the inlet plane is shown in Fig. 5.8. The turbulent kinetic energy data were used

to set the amplitudes of unsteady subgrid-velocity field by means of RFG procedure [Smimov et

al., 2001]. At this stage RFG, was not used for stochastic tracking of the bubbles inside the

domain as was done in the mixing layer simulations. The free surface was assumed to be flat,

invoking the low Froude number approximation.

Bubble motion was governed by the model of Sridhar and Katz (1). Bubbles of IOOP m

in size were randomly injected at the inlet plane with the probability distribution proportional to

the turbulent kinetic energy level (Fig. 5.8). At the free surface the life-time of the bubbles was

set to zero for the absence of more exact empirical data. The integration of (Eqn. 5.1), via a

second-order Runge-Kutta scheme provides the new velocity, v, (t), in the x, direction for each

particle as a function of time.

It should be noted that the range of bubble sizes used to calibrate Eqn. 5.1,

500 - 700,u m, is larger than the bubble size used in simulations. Although our validation on the

case of mixing layer may indicate that approximation (Eqn. 5.1) may still be valid for smaller

bubble sizes, a more through investigation of the influence of bubble size may be appropriate.

Figure 5.9 shows an instantaneous picture of all the bubbles in the wake as observed from

the rear-bottom comer of the computational domain (ship stem is not shown). It can be seen that

the bubbles tend to cluster in preferential concentration regions corresponding to high vorticity.

These regions are dictated by the dynamics of the flow in the near wake. Figure 5.10 provides a

cross-sectional view of an instantaneous velocity and bubble distributions in the wake, which is

rather typical. Two symmetrical vortex structures in the velocity distribution coincide with the

bubble agglomeration regions. With the higher vortex intensities, which will take place at a

higher Reynolds number, bubble distribution in the wake will be increasingly affected by these

vortices. This is especially true for smaller bubbles.
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Figure 5.11 shows typical cross-sectional distributions of bubbles in the wake. These

distributions are not instantaneous, but represent total counts of bubbles accumulated over the

simulation run.

Figure 5.12 shows the contours of probability density functions of bubble occurrence in

the wake. These probabilities were computed from bubble distribution histograms obtained in the

similar way as for the mixing layer validation case described above. The profiles shown in Fig.

12 indicate a rapid bubble population decay and gradual spreading of the bubble cloud at the

distance of one ship-length. Although the classified nature of bubble measurement data in the

wakes of Navy ships prevents us from making a direct comparison, we found that the predicted

bubble distributions are similar to those observed in typical ship wakes [Hyman, 1998; Hyman,

2000].

Table 5.1 shows the total bubble counts in different planes C,.,,4 and the corresponding

normalized ratios: R, = C/C 1 . These distributions indicate a strong depletion of bubbles over the

half ship-length distance, shown in Fig. 5.13. The depletion of bubbles is due to the buoyancy

driven migration to the surface and the dissolution effects. Buoyancy forces affect mainly large

bubbles, whereas the dissolution affects primarily small ones. Therefore, even the small bubbles

entrained by the vortexes will eventually disappear from the domain.

PLANE COUNT RATIO

1 46998 0.01

2 9803 0.21

3 3326 0.07

4 1119 0.02

Table 5.1 Cumulative bubble distributions in different planes

5.4.2 Bubble Clustering Effects

Bubbles motion in a turbulent vortex may lead to clustering in the vortex center. This, in

turn, may cause bubble coalescence and influence the flow itself. In order to analyze the

conditions under which such clustering takes place we considered the case of a realistic vortex
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flow obtained from experimental data [Larsson et al., 1998]. An equation of bubble motion,

including all the important terms [Sridhar and Katz, 1995] was used to predict bubble behavior.

The results were analyzed to determine the limiting values of non-dimensional parameters under

which bubble clustering and coalescence effects may become important.

The objective of the computations was to capture the regime where the bubble would

converge to the center of the vortex rapidly enough to make the coalescence events more likely.

Then, using two non-dimensional parameters, a, representing the vortex strength (Stokes

number) and fl, representing the ratio of bubble-size to bubble-separation, general conditions for

bubble clustering can be obtained.

Given two bubbles separated by a distance d in a vortex centered at the middle point

between the bubbles, the necessary condition for bubble coalescence is

CR _>fl-1  (5.6)

where CR is a convergence rate, defined as

CR =(5.7)

with r0 is the initial distance of the bubble from the axis and r, its distance from the axis

after one revolution in a vortex. Condition (Eqn. 5.6) means that the bubbles should come into
7contact with each other after one revolution in the vortex7.

Coalescence criterion (Eqn. 5.6) may be rather strong. In reality bubble-bubble

interaction effects may become important long before the criterion (Eqn. 5.6) is satisfied.

Consequently, we introduce the criterion of bubble clustering

CR 0.5f,-' (5.8)

which identifies the bubbles that approach each-other to the distance of one bubble-

diameter or less.

To compute bubble motion in the turbulent vortex equation (5.1) was used to describe the

bubble motion and the flow-field was constructed using a curve-fit to the experimental data

[Larsson et al., 1998] (Fig. 5.14). The following function was used to approximate the data

U, ==a(1 - B7 exp(-(r/R,)2)) (5.9)

7Usually turbulent eddies do not last for more than one revolution
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Uo =a r exp(-(r/Ro)Y) (5.10)

where

a =1.0

B, =0.08

R, =0.7

Ro =0.22

y=0.58 (5.11)

The advantage of using the analytical formula is that all the velocity derivatives required

in the bubble-equation of motion can be computed analytically, thereby minimizing the

discretization errors. So, the spatial derivatives needed for calculating the vorticity, 6 in (5.1),

can be easily computed from the expressions (5.9), (5.10), which gives only two non-zero

derivatives

oUt = 2B. a r e_(rIR,)2

2
ar RZ

=Ul- ==a (1-y (Ro)-r rr)e-(lRo )Y
ar

An important measure of the strength of the vortex is it's turnover time. For the whole

core region this time is almost the same, since the core region can be approximated by the solid

body rotation

Uo = a~ r (5.12)

where a is the strength of the vortex, which is related to the turnover time of the core as

r 2 r a-1 . Since data in Fig. 14 are non-dimensional, we used a as a parameter to define the

vortex strength. The vortex size parameters R0 , R9 were kept constant, which corresponds to the

vortex core size of d2 :0.5m. We did not scale down the vortex size since the results of Fig. 5.14

were obtained for a large vortex produced in the stem of the ship and it is not clear if they can be

scaled-down to small eddy sizes. All computations were applied to the case of d <d and

db << d., i.e. the bubbles were considered to be inside of the vortex core and bubble size much

smaller than the typical eddy size. For a given bubble separation d the results would apply to all

the eddy sizes greater than d, and having the same vortex strength a. The neglect of eddy sizes
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smaller than the separation length, i.e. d, <d, may lead to some overestimate of clustering

effects for highly turbulent flows.

Figure 5.15 shows a typical convergent trajectory of a bubble. In this case a bubble of

rb= 700/m and rb= 1.03.10-4 s was injected into a core of a vortex with a = 1Os-'1 at re = lcm

from the axis. The convergence factor was close to CR=2. The corresponding non-dimensional

parameters for this case are: a = 1.64.10-4 and f8 =0.07, which lies outside of coalescence

limits defined by (Eqns. 5.6 and 5.8).

To visualize the results the computed particle trajectories were plotted in a coordinate

system moving along the vortex axis with the velocity equal to the center-line axial velocity of

the flow: U, (r = 0). In Fig. 5.15 gravity acceleration vector g is directed along the axis. The

main contribution to the bubble dynamics in this flow came from the added mass force Fa

responsible for bubbles attraction toward the the vortex axis, and the gravity force, Fb, which

caused them to accelerate along the axis. As can be seen in the figure, the displacement along the

axial direction is smaller than the drift toward the center, which approximately relates to the ratio

of buoyancy to added-mass forces characteristic for this particular bubble size and vortex

strength. In only about 1/3 of all cases the vortex axis can be considered as approximately

aligned with the gravity force, whereas in the other 2/3 of the cases the corresponding axes are

misaligned, and bubbles convergence toward the center is slower. So, for the bubble with CR= 2

and axis aligned with the gravity the convergence rate went down to approximately 1.5 when the

axis was turned at the right angle to g. Considering this, a more accurate convergence criterion

can be formulated as

CR >-f8-3 (5.13)

where

CR=1/3CRII + 2/3 CR± (5.14)

with CRI being the convergence rate for the parallel and CR1 for the normal alignment of

the gravity and vortex axis. As can be seen, large enough bubbles, experiencing strong gravity,

can be completely drifted away from the vortex in the normal alignment. It should be noted that

the coalescence criteria (Eqn. 5.6), (Eqn. 5.8), (Eqn. 5.13) are rather approximate, and should

only be used for order of magnitude estimates.
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Our calculations of bubbles with db =lmm (Tb =5.26.10-') show (Fig. 5.16) that for

,6 = 0.25 the coalescence criterion (Eqn 5.6) is approximately satisfied for the vortex strength of

a = 40s-1 and clustering criterion (Eqn 5.8) - for a = 20s-'. This corresponds to the Stokes

numbers of a >3.34.10-4 and a>Ž1.67.10-- respectively.

In our LES computations of a wake behind a Navy ship model 8 the vorticity varies

between 0 and 100. Using the relation I 9 a, valid in the vortex core region, we can get an

estimate of the range of Stokes numbers that may be encountered in simulations. For a bubble of

db = mm it is 0<a_<8.33 .10-4. For bubbles of smaller sizes the lower bound on a will be

lower. Hence, if we restrict our analysis to the bubbles of sizes less than 1mm in size, we may

infer that the maximum Stokes number that we can currently reproduce in computations is

a ý8.33.10- 4 . Considering our clustering bound for bubble coalescence of a>Ž1.67.10-', we

may conclude that in our current LES computations we may consider bubble clustering and

coalescence effects in the range of (1.67•< a•_< 8.33).10-4 .

The important spatial measure is the distance of the bubble from the vortex axis rather

than the size of the eddy, which can be much bigger. Considering this, the bubble/eddy size ratio,

,8, would greatly depend on bubble size distribution and concentration. The value ,6=0.25,

which was used in the previous calculations, requires bubble separation from the axis to be of

4mm or less for all bubble sizes under 1mm. Consequently, for the clustering of the bubbles to

occur their concentration should be high enough to allow at least two bubbles at distances shorter

than 4mm from each other, which gives the lower bound on bubble number density as

Nb > 2/(4.l10-') = 3.13.10' m-3 . Combining with our previous estimate of a, we conclude that

for bubble number densities above 3.13 -10' m-3 bubble coalescence effects can be present for

a >1.67.-10-'.

On the other hand, considering the maximum vorticity in the wake a,,ax = 1 00s-, we may

give an estimate of lower bubble concentration limit when the coalescence effects become

important. The computations showed that the coalescence criterion (Eqn 5.6) for a bubble of

8http://www50.dt.navy.mil/5415/
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db = 1mm (rb = 5.26.10-5 ) in a vortex core of a = 100s-' gives ,6 = 8.33.10-2, which provides

the following coalescence conditions on bubble number density, Nb, and void fraction, F:

NCo> 2 =1.15.106 m 3
(dbl//)

3

FbC°>Nb -Tb- 6 .02l.10

3

Bubble clustering criterion (Eqn 5.8) results in 8 =4.17 .10-2, and the corresponding

relations for the number density and the void fraction are

NAC = c/2No> (/1 =5.75.10 5 m-3

Fb= 1/2Fbco F 3.01.10- 4  (5.16)

With the higher resolution of LES than we are currently using, and which we shall be

able to attained on distributed memory platforms, higher levels of vorticity can be reached. This

is usually a result of smaller eddies generating higher vorticities than parent-eddies. It may bring

the estimates (Eqn. 5.15), (Eqn. 5.16) further down in number densities and void fractions.

The cases above relate to the situation of mono-dispersed bubbles (single-size). In the

poly-dispersed case the coalescence criteria can be formulated by redefining /3 as

/J=(dbl + db2)/(2d,) (5.17)

where db,, db2 are diameters of bubbles of two different sizes in the vortex, separated by

de. This expression for 8l should now be used in (Eqn 5.6) and (Eqn. 5.8). To obtain an estimate

of bubble collision/coalescence frequency a double integration over all the bubble sizes db],db2

weighted by the bubble-size distribution would be required. A rough estimate can still be made

by single integration of the results for the mono-dispersed case, considering that the obtained

void fraction limits will represent an over-estimation of the real case.

Since estimates (Eqns. 5.15 & 5.16) were based on LES computations of a ship model

with a relatively small length of 5.72m we can expect the upper bounds on vorticity to further

increase in the case of a real ship where the Reynolds number and vorticity are much higher.

Consequently, the estimates of Nb and Fb in (Eqns. 5.15 & 5.16) can be lower.
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We should also note that clustering/coalescence effects considered here were attributed to

a single revolution of the vortex. In reality an accumulated effect of many revolutions in one or

many subsequent eddies may significantly amplify the effect of a single revolution.

Consequently it will lead to lower values of Nb, Fb than estimated in (Eqns. 5.15 & 5.16). On the

other hand the estimates were made for the case of two bubbles aligned on the opposite side of

the vortex axis, which will be true for only a fraction of all possible bubble alignments. The

account of this will increase the values of Nb, Fb.

Considering all these factors, the actual values of void-fraction limits for

clustering/coalescence can be close to the maximum values observed in real-size experiments,

which is about 10-', and lie within the range of values that can be expected in the stern region

[Hyman, 2000]. The numerical studies of Carrica et al. (1998) provide the estimates of maximum

void fractions of 10-', which occur mainly near the free surface in the stern region.

Therefore, we can conclude that in realistic ship-wake situations bubble clustering and

coalescence effects may be important, especially in the near-wake region of 1-3 ship lengths.

5.5 Discussions

The results of this study show the viability of joint LES/LPD/RFG method for computing

turbulent bubbly wakes, which can be applied to high Reynolds-number ship-wake flows.

Bubble distributions for mixing layers and wakes were obtained.

The effect of bubble influence on the flow field was not considered in this study.

Nevertheless, the work by others [Elghobashi and Truesdell, 1993; Truesdell, and Elghobashi,

1994] indicates that when there is a large density ratio between the phases, as considered in this

study, the influence of bubbles on the carrier phase may become important even though the void

fraction remains small. Works on this topic are continuing under the current project.

To further improve the accuracy of predictions for the flat-plate wake a more realistic no-

slip wall boundary condition may be used together with the grid refinement at the wall so as to

resolve the turbulent boundary layer.

Stochastic bubble tracking with RFG for the ship-wake case will have to be introduced

and compared to the current approach and experimental data to build a more thorough ship-wake

validation case.
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Performed estimates of bubble clustering effects show that they can be important in

certain regions of the near wake. In the first approximation the account of these effects can be

done by introducing a two way coupling (bubble-flow influence) scheme. In the second level of

approximation it can be done by including bubble coalescence effects, which can be

accomplished within an implicit probabilistic interaction scheme proposed earlier by the authors

[Smimov and Celik, 2000].

Given long execution times on a single work station, it would be appropriate to consider

an "embarrassingly parallel" run on a a computer cluster (Beowulf), where each work station

would run essentially the same simulation with the initial conditions taken from independent

statistical samples. This way a linear speedup can be achieved in collecting the statistics and

improving the accuracy of the computations. This assertion has been investigated and

encouraging results have been obtained for shipwake simulations (see Appendix A).
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Figure 5.3 Instantaneous bubble distribution
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are shown in Figure 11.
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Figure 5.13 Bubble depletion in the wake (LES).
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(a) Top view (CR 1- 2) (b) Side view (CR ; 2)

.•

(c) Top view (CR • 4) (d) Side view (CR e 4)

Figure 5.16 Convergent bubbles (Bubble motion shown is relative to an observer moving with the

axial velocity of the vortex.)
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6 PARALLELIZATION OF THE LES CODE FOR SHIP WAKES

Fast computers have stimulated the rapid growth of a new way of doing science. The two

broad branches of theoretical science and experimental science have been joined by

computational science. Computational scientists simulate on supercomputers phenomena too

complex to be reliably predicted by theory and too dangerous or expensive to be reproduced in

the laboratory. There is always a demand for greater computational speed. Areas requiring great

computational speed include numerical modeling and simulation of scientific and engineering

problems. The cost of an advanced single processor computers increases more rapidly than their

power, which made parallel processing evolve.

In this part of the study we present the parallel implementation of large eddy simulations

(LES) of a ship wake using the domain decomposition technique. We present the results of the

implementation executed on a cluster of workstations at West Virginia University and Pittsburgh

Supercomputing Center. Also, we will show how the implementation scales up with the number

of workstations and that it is possible to obtain better accuracy by increasing the number of

workstations in the cluster system.

Algorithmic improvements and faster machines, particularly parallel machines, provide

the opportunity for effectively using large-eddy simulations for the problems of practical

importance. The main objective in this study is to predict the development of turbulence in a ship

wake flow using cluster computing.

This requires analysis of the ship wake flow, development of an efficient and accurate

simulation of turbulence in the ship wakes by refining the large eddy simulation methodology,

setting up the computational domain, analysis of the computer resources, and analysis of the

results.

6.1 Methodology

The conventional domain decomposition technique for elliptic problems is realized

through a two-way exchange of data at the boundaries of the domains (Simon, 1992; Dihn et al.,

1984) as illustrated in Fig. 6.1(a). This guarantees the convergence to the corresponding single
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domain case. However, this strategy may carry an excessiVe communication overhead for three

dimensional CFD simulations. If the problem is parabolic itl one of the spatial directions one can

employ a parabolic communication approach (Fig. 6.1(b)), This may reduce communication

overhead by half. To test the validity of this approach a parallel version of the LES code has

been implemented using a one-way data exchange (Osman et al., 2000).

(a) Elliptic decompositioti

(b) Parabolic decompositicif

. C.OF DOMAIN 2 RECEIE B.C.OF DOMAINI RECEIVE
INFO 11T.ON PROM DOMAIN II 1,FORMATION FROM DOMAIN 2

FOR .OUTFLO

DOMAIN I B.C. FOR
(N ) DOMAIN 2

DOMAIN 1 DOMAIN 2

(c) Boundary conditions

Figure 6.1 Domain decompositioil ftrategy.

The drawback of the parabolic exchange scheme is the necessity to provide additional

outlet boundary conditions for each domain, which can altef the character of the flow close to the

domain outlet. To avoid the influence of this distortion oil the flow- field the communication

plane should be set at some distance from the outlet plane. Thus some of the memory space and

the processing time is inevitably lost. Moreover, only by ugihig elliptic message transfer can one

apply domain decomposition technique in non-parabolie directions which is necessary for

geometrically complex flows.
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For a linear solver a two-node overlap communication strategy (Fig. 6.1a) would be

enough. For a high-order accurate solver, however, a wider overlap in communication planes

will be appropriate. Since the LES solver is usually at least second order accurate, we employed

four and six-node overlaps in our communication schemes. For second order accurate diffusion

terms in momentum equations a four-point overlap is enough, whereas for pressure solver

decomposition a six point overlap would be more appropriate.

6.2 Applications

The parallelizing methodology described above was implemented on a Beowulf cluster at

WVU and at Pittsburgh supercomputer center (www.psc.edu). Both clusters run Linux operating

system with the interprocessor communications based on MPI.

6.2.1 One Way Communication Simulations

In order to test the viability of the implemented decomposition scheme several test

simulations were performed. The communicated data were velocities and contravariant velocities

and pressure. It should be noted that since the pressure solver is usually sub-cycled to the flow

solver sending the pressure information carries most of the communication overhead. In practice,

it appears that excluding pressure communication does not lead to a significant degradation of

the solution for non-pressure driven flows, like wake flows. This conclusion was also confirmed

in our simulations. A flat plate wake flow was used as the first case. The geometry and numerical

scheme can be found in (Smirnov et al. 2001). For the sake of a higher accuracy the simulations

were continued with two-way communications as required in elliptic solutions.

6.2.2 Two Way Communication Simulations

Several medium scale simulations were performed. First a laminar channel flow case was

computed on 2, 4 and 8 processors. Figure 6.2 shows the axial velocity contours obtained from

the 8-processor run. Although pressure communication was blocked in this simulation the

contour lines show no irregularities at the inter-processor boundaries. These results confirm the

correctness of the decomposition scheme, and support our assumption that pressure coupling is

rather week between the processors. For the case of a wake flow the effect of pressure will be

even smaller, thus justifying the velocity-only decomposition strategy. Despite this finding, for
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the sake of universality the pressure communications were also invoked in the simulations from

this point on.

0.02 -•

0.0' tO 2. 30 4.0

Figure 6.2: Laminar channel flow. Results of 8-processor run. Axes dimensions are given in meters.
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Figure 6.3 Comparison of numerical meshes used in single arid 3-processor simulation (black lines

indicate inter-processor boundaries.)

The flat-plate shear layer was investigated for verification. The mesh created for this task

is shown in Figure 6.3. Keeping the domain size and effective number of grid points (570K

nodes) constant, the same simulation was performed on a sifigle processor and on 3 processors.

The comparison of the predictions as shown in the streamwi~e contours in Figure 6.4 and profile

along the x-axis in Figure 6.5 has shown that both simulations are in perfect agreement. This has

ensured us with confidence in the predictions of parallel simulations of this type of flows. The

processor time was also recorded for this case on the local DecAlpha Cluster (570K grid nodes).

Here, the single processor execution took 7.15 seconds per Pits (pits = Pressure Iteration * Time
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Step) and the 3 processor execution took 2.78 sec/pits per CPU, which indicated a scale up of

2.57 or 85% efficiency.
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Figure 6.4 Comparison of predicted streamwise velocity contour in single and 3-processor simulations

(black lines indicate inter-processor boundaries.)
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Figure 6.5 Comparison of predicted streamwise velocity at one point in single and 3-processor

simulations

Next, two flat-plate wake simulations on 4 and 8 processors were done for the wake flow

of Reynolds number 1.2-106. In both simulations the total number of grid nodes was equal to

224x18x10, with 28x18x10 nodes per processor in 8-processor run and 56x18x10 nodes per

processor in a 4-processor run. The results were compared to look for any possible discrepancy
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introduced by the inter-processor communications. Figure 6.6 shows a perfect agreement

between these two cases on the computed flow-field. The virtual absence of turbulent

unsteadiness in the figures is the result of high numerical diffusion related to relative coarseness

of the grid. Another simulation of a shear layer flow was performed on 8 processors with the grid

size of 250K nodes on each processor. The maximum Reynolds number, based on shear layer

thickness was 375. As can be seen in Fig. 6.7 the development of shear-layer was not affected by

inter-processor communications. The speed of execution of the large-scale run was considerably

slower with one iteration computed in approximately 1.5 sec on a DEC-Alpha cluster consisting

of 533MHz, 512MB nodes.

The scalability analysis performed for different domain decompositions (Osman et al.,

2000) indicted that the speedup is almost linearly proportional to the number of processors

(domains) being used.

.0.08.

0.06.

0.04

:0.0.2*1

0
0 0,1 0.2 0.3 0.4 0.5 0.6

(a) 28xl8xl0-node 4-processor run
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:0,04 6T

.0.02 -

0. 0A.1 0.2 0. 3 0.4 0.5, 0.

(b) 56xl 8xl 0-node 8-processor run

Figure 6.6: Comparison of wake simulations on different number of processors.
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Figure 6.7: Large-scale 8-processor simulation (250k nodes on each processor).

6.2.3 Parallel LES Simulations of a Ship Wake on A Straight Track

The case presented in section 4.3 is considered for the parallel simulations in this part of

the study. In order to avoid solving for the flow around the ship model, the computational

domain starts from the inflow boundary (or initial data plane) located immediately after the body

in the wake, where there is no flow-reversal. The pseudo-random flow field generated by the

RFG method is added to the mean flow of RANS simulatiof§ to establish the unsteady boundary

conditions at the inlet plane. The whole ship flow including the ship wake can be sketched as in

Fig. 4.1(b). The computational domain starts from x/L = L.05 (where x starts from the front of

the ship model). At this plane the RFG method is used in conjunction with the RANS

calculations (Stem and Wilson, 2000).

At the inflow boundary all components of the velocity are specified as a function of time

and space. At the outflow boundary Neumann (free gradiefit) boundary conditions are applied.

Symmetry conditions have been used in y direction and petl6dic boundary conditions have been

used in the spanwise (z) direction. At the free surface a slip condition is allowed in x and z

directions, but the velocity component normal to the free sUrface is set to zero. As such the free

surface is approximated as a moving flat plane, i.e. low Froude number approximation is

involved.

The computational domain size is 3.OxO.3x0.5 (given in non-dimensional units in ship

length) in x, y and z-directions (axial, vertical and transvef§e directions), respectively. The grid

size is 108x50x66 per processor multiplied by 10 processofs, which sums up to -3 million grid

nodes. Non-uniform grid spacing, stretching smaller thAh 1:03, is used in both z- and y-

directions. The length scale and time scale used in RFG were selected as constant in this case.

The length scale was 0.02 of the ship length, and the time scale was 0.001, non-dimensionalized
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by free stream velocity and ship length. Those numbers were selected because the turbulence

length scale is estimated to be about 15% of the ship width. The Smagorinsky SGS model, and

second order central differencing scheme were used unless otherwise stated.

The unsteady streamwise velocity variation is presented in Figure 6.8, where U is the flow

trough time. This point was selected inside the wake, as seen from the velocity defect. Figures

6.9 and 6.10 show the vertical variations of the mean velocities and the root mean square

velocities, respectively, where the time averaging was made over 3R. Figure 6.9 shows that the

spanwise velocity at the center does not change much in the axial direction, but same velocity

components off centerline become more uniform as the wake develops. The vertical velocity at

the centerline has a peak below the free surface, which gets weaker in the axial direction.

Significant changes are observed in the streamwise velocity profiles in both axial and vertical

direction. The location of peak axial velocity moves deeper into the wake indicating a plunging

effect as the wake develops in the streamwise direction. This peak is stronger off the centerline

indicating the strength of one of the bilge vorticities seen in Fig. 6.11. The intensity of the rms

velocity fluctuations show very little decay but significant redistribution and become more

isotropic as the wake develops. Initially the turbulence is concentrated more near the free

surface. This area plunges deeper with increasing axial distance.

The development of the wake in the axial direction is presented in Figures 6.11 and 6.12.

The two large bilge vortices seem to first move away from each other, then further downstream

they gradually merge together as they loose strength. However, the resolved turbulent kinetic

energy seems to increase in certain regions as seen in Figures 6.1 lb and 6.12b, even towards the

end of the domain (see also Fig. 6.15). This indicates that the domain should be longer than the

selected 3 ship lengths. Also, one has to account for the wake spreading and a deeper and wider

cross-section is necessary to accommodate the whole wake further downstream than 3 Ship

lengths.

In addition to these, the wake spreading or wake width, which is obtained from the

parallel run to be roughly w-x" 4 is also consistent with Buller and Tunaley (1989)'s

measurements. Milgram et al. (1993) and Hoekstra& Ligtelijn (1991) found w-x 11 5 . And the

spreading rate of the ship wake on a straight track is observed to be significantly higher than that

of a ship wake on a circular track. This is well observed from the parallel simulation predictions

of the time averaged streamwise velocity magnitude contours in Figure 6.11 for a straight track
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ship wake using 3 million grid nodes on 10 processors (Intel Pentium4) on a domain of 3 ship

lengths. These parallel computations were also expanded to a 6 million nodes simulation on 6

processors (3rd generation DecAlpha), and more detailed structures were captured. However, the

turn around time for these simulations has significantly increased. The predicted extra detail is

especially pronounced in the vorticity contours presented in Figure 6.13. The 6 million nodes

simulation was still in the early stages, therefore one should not fall into the wrong conclusion,

that the wake spreading is much more pronounced. In fact, it will tighten as the simulations

continue.

The resolved turbulence kinetic energies of the wake simulations (on a single processor)

of a ship cruising on a straight and circular track are presented in Figure 6.14, where a significant

decay of kinetic energy in the streamwise direction can be observed. The locations for both

studies are taken to be at the highest kinetic energy value obtained from the IDP (along the

centerline for the non turning ship and at y= -0.001 and z=-3.18 for the turning ship wake

simulation). Comparing to the predictions of a non-turning ship wake, the turning ship case

indicates less kinetic energy values. However, it should be noted that, this may be due to the

coarser grid resolution in the far wake. Overall the trends are similar, but there is a sinusoidal-

like distribution of the TKE prediction in the near wake for the straight ship case. It may be

because of the existing surface wave from the RANS calculations (Stern and Wilson, 2000). This

indicates that some wave information may be present implicitly in the inflow boundary.

However, this sinusoidal-like distribution of TKE is not seen in the simulations of a ship on a

circular track, which may imply that there is not any wave information present in the RANS

simulations (Hyman, 2001).
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S0.65

0.6

"0 0.25 0.5 0.75 1
T

Figure 6.8. Temporal history of streamwise velocity components at x = 0.6, y = -0.012, z -0.06
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Figure 6.13 a) Vorticity magnitude contours obtained for the wake behind a ship on a straight track using

parallel computations with 3 Million grid nodes, b) Preliminary V-Oiticity magnitude contours obtained for

the wake behind a ship on a straight track using parallel compiltAtions with 6 Million grid nodes (black

lines show processor boundaries, overlap/communication regions)
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Figure 6.14 Resolved turbulence kinetic energy of the wake sia•bihtion of a ship cruising on a straight and

circular track normalized w.r.t. its inlet value (single node computation)
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Figure 6.15 Resolved turbulence kinetic energy of the wake simulation of a ship cruising on a straight

track normalized w.r.t. its inlet value along a line of center z = 0,055, y=-0.012 (Parallel computations)

The same dip seen in Figure 6.14 is also present in the 3 million nodes simulation

predictions. However, the kinetic energy presented in Figure 6.15 also indicates that the kinetic

energy is increasing in the downstream direction. However, the increase in TKE towards the end

of the wake is an art effect of taking a line, along which TKE is computed, that is not aligned

with the main streamwise direction. To have a better perspective, Figures 6.11 b and 6.12b should

be investigated. Here, the bilge vortices separate and later merge closer as they become larger,

which is probably the cause for the turbulent kinetic energy rise. Moreover, if the ship turns on a

circular track, the wake generated by the ship may not follow a circular track. Hence, a line that

is not aligned with the center of a bilge vortex would give a false idea of the TKE variation. It

should be mentioned that some of the initial decay in k could be the out effect of the application

of RFG at IDP. This issue is currently under investigation.

6.3 Discussions

Detailed LES calculations have been performed for the developing wake of a surface ship

cruising on a straight track with 3 million nodes (108x50x66 nodes per domain, Ax-0.46m;

Ay-0.5m; Az~1.2m in the wake region) and 6 million nodes (330x50x66 nodes per domain,

Ax-0.23m; Ay-0.5m; Az-1.2m in the wake region).

The results are analyzed and turbulence statistics have been presented for further

comparison with RANS and/or experiments as they become available. Qualitative comparison
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with experimental observations indicate that the LES results are credible, but rigorous validation

is necessary to make definite conclusions.

Relatively under-resolved LES of the wake of a ship turning on a circular track has also

been performed and the results are compared to those of a ship cruising on straight track.

It seems that the wake of the turning ship is much narrower and has more concentrated

vorticity due to the merger of the two bilge vortices. There is little similarity between these two

wakes. The wake of the turning ship exhibits more dynamic futures. A thorough comparison of

the two cases will only be possible when the grid resolution of the turning ship wake is increased

by employing parallel runs.
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7 CONCLUSION

Large eddy simulation of complex turbulent flows and bubble dynamics in the wake of

cruising ships has been studied in detail. To reduce cost and simulation time the calculations

were started using an inflow plane in the wake of the ship itself. This requires a robust approach

for providing an instantaneous velocity field in conjunction with the prescribed mean flow field.

A new technique was developed for this purpose, namely the RFG technique. RANS calculations

which were including the ship hull were used to provide the RFG procedure with the information

needed on the inflow boundary. The further development of the wake flow was calculated via

LES using the domain decomposition technique on parallel machines. Furthermore, the flow was

injected with bubbles to compute bubble statistics

Detailed LES calculations have been performed for the developing wake of a surface ship

cruising on a straight track with 3 million nodes (108x50x66 nodes per domain, Ax-0.46m;

Ay-0.5m; Az-1.2m in the wake region) and 6 million nodes (330x50x66 nodes per domain,

Ax-0.23m; Ay-0.5m; Az~1.2m in the wake region.

The results are analyzed and turbulence statistics have been presented for further

comparison with RANS and/or experiments as they become available. Qualitative comparison

with experimental observations indicate that the LES results are credible, but rigorous validation

is necessary to make definite conclusions.

The Random Flow Generation (RFG) technique, that has been developed can be used to

initialize the turbulent flow field and also to prescribe realistic turbulent inflow boundary

conditions for LES. By using this technique, the turbulent flow field can be reproduced with

good accuracy, even when limited information is available on the mean flow. This information

can include the turbulent kinetic energy, its dissipation rate, or shear stresses.

The wake simulations for the ship model DTMB 5512 moving on a straight track has

been compared with the macro wake measurements by Hoekstra & Ligtelijn (1991). The

prominent flow structures such as the bilge vortices are captured by LES. In measurements and

simulations, the minimum axial velocity occurs near the free surface of the center of the wake.

Moreover, the extent of axial turbulence intensities is in good agreement with measurements.

Additional smaller side vortex pairs are observed away from the center of the wake. As the wake
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widens, the strength of these vortex pairs weaken. The vorticity becomes more concentrated near

the free surface. Moreover, the wake spreading or wake width, which is obtained to be roughly

w-_x" 4 is consistent with Tunaley & Buller (1 989)'s measurements.

It seems that the wake of the turning ship is much narrower and has more concentrated

vorticity due to the merger of the two bilge vortices. There is little similarity between these two

wakes. The wake of the turning ship exhibits more dynamic futures. A thorough comparison of

the two cases will be possible when the grid resolution of the turning ship wake is increased by

employing parallel runs. This is the topic of an upcoming publication which will be an addendum

to this report.

The classical SGS model, namely the standard Smagorinsky model, is not totally suitable

for complex flows as it uses a constant eddy viscosity coefficient for the entire domain. It was

observed that the resolved eddies and the kinetic energy are sensitive to the eddy viscosity

coefficient. To remedy this, the Smagorinsky model was modified to account directly for the

effect of the free surface on turbulence generation, and the performance a nonlinear one-equation

SGS model was assessed.

It has been clearly demonstrated that if there are wall boundaries, there should be wall

modifications. The results indicated that very reasonable turbulence statistics were predicted with

the mentioned modifications and it could be used as a SGS model in the simulation of ship

wakes. These models were applied to the wake behind a circular track and has been compared

with the standard Smagorinsky model.

The results of this study show the viability of a joint parallel LES/LPD/RFG method for

computing the developing turbulent bubbly wakes generated by surface ships, at high Reynolds-

numbers. This is well documented in our publications (see References) by Celik, Smirnov,

Yavuz, Shi, Cehreli and Hu.
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A major drawback in the Lagrangian particle simulation in dispersed two-phase flows, in

terms of the computational cost and machine capacity, is the limitation on the number of

particles, or particle clouds whose trajectories are to be tracked parallel to the solution of the

continuous flow field. Insufficient number of particles being tracked commonly leads to

inaccurate statistics.

Earlier work of the authors on parallelization of a LES solver by means of domain

decomposition [1, 2] provided the possibility to simulate large scale turbulent structures of

typical ship-wakes on computer clusters. The next logical step is to extend the pure turbulence

model with important multi-phase features of the wake such as bubble dynamics. The algorithm

for particle tracking and population dynamics developed earlier by the authors demonstrated the

ability to efficiently simulate large populations of particles including coalescence effects with

even modest computer resources [3, 4, 5, 6]. However, parallel implementation of a discrete

particle dynamics algorithm and LES flow solver by means of domain decomposition technique

commonly leads to large communication overheads and load balancing problems. In this study

we pursued a simple embarrassingly parallel strategy, which enabled us to avoid these two

problems. The basic idea is to perform the simulation of statistically independent realizations of

the flow-field and particle ensembles, with each realization assigned to one cluster node. This

strategy completely excludes any communication between the computing nodes, at the same time

achieving the perfect load balance. However, the technique calls for a new compromise between

the required accuracy in the resolution of flow features and the desired quality of particle
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statistics. With the whole computational domain residing on one node, the accuracy of flow

solution is restricted by the single node memory size.

Despite its seeming simplicity this parallelization strategy should take care of ensuring

statistical independence of ensembles generated on different computing nodes. This is achieved

by imposing independent random generation of three important flow and particle conditions: (1)

initial conditions on the flow-field, (2) inlet flow conditions, (3) particle injection distribution.

All three conditions are subjected to randomized time-dependent change, which nevertheless

follows a predefined statistical distribution.

It should be noted, that while generating independent ensemble of particle injection

coordinates/velocities with a given distribution is a simple matter of Monte-Carlo sampling, the

generation of randomized inflow and initial conditions for the flow field should be subjected to

certain restrictions imposed by continuum dynamics laws. For example, the continuity relation

will generally not be satisfied for any random distribution of flow velocity vectors, even if this

distribution obeys Gaussian or other valid statistics. This problem of adequately representing

time varying random fluid velocity field was solved earlier by the authors in the development of

RFG method [7], and was applied successfully in this case to generate statistically independent

and divergencefree flow-field ensembles.

Iterations of the discrete bubble solver were sub-cycled inside flow iterations following

Lagrangian particle dynamics (LPD) in a dilute dispersed two-phase flow with one way

coupling, i.e. where the particles motion is determined by the continuous phase flow, but the

continuous flow is not influenced by the particles. The number of particles tracked in each

simulation can vary, depending on the machine capacity and optimal computational expense. The

realizations from different runs on different nodes were collected and analyzed to produce

histograms of bubble distribution. The global particle statistics was obtained by averaging over

all the ensembles.

The combined LES/LPD solver was set up to run on a Beowulf cluster, with I GHz 1GB

computing nodes. A set of simulations of a turbulent bubbly ship wake flow was performed, in

which a total of about 254000 particles were tracked on nine different computing nodes. The

combined statistics is compared to the statistics from a single run, indicating qualitatively

equivalent, but much better results.
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Figure 1 shows a snapshot of a particle ensemble representing bubbles in a ship wake.

The cumulative cross-sectional distribution of bubbles in the inlet plane is shown in Fig.2. Only

the near-wake regionwas modeled in this simulation, which was dictated by available computer

memory restrictions. The post-processed bubble distribution at various cross-section are

presented as histograms in Fig.3. The total bubble decay computed on the basis of the

simulations (Fig.4) is consistent with the experimental data [8].

In conclusion we would like to mention that along with the relative simplicity of

implementation, and parallel efficiency of the approach, this embarrassingly parallel strategy is

especially suitable for the newly emerging grid computing infrastructure, which is still not well

adapted for the tightly coupled problem, as those relying on domain decomposition methods.
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